Документ подписан простой электронной подписью

Информация о владельце: МИНИСТЕРСТВО ФИО: Малахова Светдана Дмитриевна Дмитриевна Дмитриевна ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Дата подлики и программий ключ: имени К.А. ТИМИРЯЗЕВА ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

калужский филиал

Факультет агротехнологий, инженерии и землеустройства Кафедра механизации сельскохозяйственного производства

УТВЕРЖДАЮ:

И.о. зам. директора по учебной работе

Т.Н. Пимкина

10H9G9EnNI

11 21 m

2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.09 ФИЗИКА

для подготовки бакалавров

ФГОС ВО

Направление: 35.03.04 «Агрономия»

Направленность: «Агробизнес»,

«Защита растений и фитосанитарный контроль»

Kypc: 1

Семестр: 1

Форма обучения: очная, заочная

Год начала подготовки: 2022

Разработчик: И.В. Иванов, к.ф-м.н., доцент

16.06, 2022 г.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 35.03.04 «Агрономия» и учебного плана.

Программа обсуждена на заседании кафедры механизации сельскохозяйственного производства, протокол № g от l6, l6 2022 г.

Зав. кафедрой

Ф.Л. Чубаров, к.т.н., доцент

16.06 2022 г.

Согласовано:

Председатель учебно-методической комиссии по направлению «Агрономия»

идии А.Н. Исаков, д.с/х.н., доцент

хо. 06 2022 г.

Заведующий выпускающей кафедрой агрономии

_ В.К. Храмой, д.с/х.н., профессор

80,06 2022 г.

Проверено:

Начальник УМЧ

доцент О.А. Окунева

СОДЕРЖАНИЕ

АННОТАЦИЯ	. 4
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	. 5
3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	. 5
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	. 7
4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТ ПО СЕМЕСТРАМ 4.2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.3 ЛЕКЦИИ/ЛАБОРАТОРНЫЕ/ПРАКТИЧЕСКИЕ/СЕМИНАРСКИЕ ЗАНЯТИЯ	. 7 . 8 . 9
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	
6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТОГА! ОСВОЕНИЯ ДИСЦИПЛИНЫ	M 15
6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений навыков и (или) опыта деятельности	16
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 1	13
7.1 ОСНОВНАЯ ЛИТЕРАТУРА	19 20
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)	20
9. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)	20
10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)	21
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	21
Виды и формы отработки пропущенных занятий	22
12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕНИЯ	ПС 22

Аннотация

рабочей программы учебной дисциплины Б1.О.09 «Физика» для подготовки бакалавра по направлению 35.03.04 «Агрономия», направленность: «Агробизнес», «Защита растений и фитосанитарный контроль»

Цель освоения дисциплины «Физика» при подготовке агрономов состоит в формировании представлений, понятий, знаний о фундаментальных законах современной физики, навыков применения в профессиональной деятельности физических методов измерений и исследований. Студенты должны ознакомиться с основными физическими явлениями в природе и их влиянием на растения, с физическими процессами, протекающими в растениях, продукции растениеводства и окружающей среде (воздухе, воде и почве), а также с физическими принципами работы технологического и исследовательского оборудования, используемого в агрономической практике.

Место дисциплины в учебном плане: дисциплина «Физика» относится к обязательной части программы обучения по направлению 35.03.04 «Агрономия» и проводится в 1-м семестре.

Требования к результатам освоения дисциплины. В результате изучения дисциплины у студентов формируются следующие компетенции:

- УК-1 способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач:
- УК-1.3 аргументированно формирует собственные суждения и оценки с использованием системного подхода;
- ОПК-1 способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий:
- ОПК-1.1 демонстрирует знание основных законов математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач в области агрономии;
- ОПК-1.2 использует знания основных законов математических и естественных наук для решения стандартных задач в агрономии.

Краткое содержание дисциплины. Дисциплина «Физика» содержит следующие разделы: механика, термодинамика, электродинамика, оптика и квантовая физика. В рабочей программе представлены темы каждого раздела, указаны связи с другими дисциплинами, виды занятий, тематика лабораторного практикума и практических занятий, учебно-методическое, информационное и материально-техническое обеспечение, методические рекомендации по организации изучения дисциплины.

Общая трудоемкость дисциплины: 3 зачетных единицы (108 часов). **Промежуточный контроль:** зачет.

1. Цель освоения дисциплины

Цель освоения дисциплины «Физика» при подготовке агрономов состоит в формировании представлений, понятий, знаний о фундаментальных законах современной физики, навыков применения в профессиональной деятельности физических методов измерений и исследований. Студенты должны ознакомиться с основными физическими явлениями в природе и их влиянием на растения, с физическими процессами, протекающими в растениях, продукции растениеводства и окружающей среде (воздухе, воде и почве), а также с физическими принципами работы технологического и исследовательского оборудования, используемого в агрономической практике.

2. Место дисциплины в учебном процессе

Дисциплина «Физика» включена в перечень обязательной части учебного плана. Дисциплина «Физика» реализуется в соответствии с требованиями ФГОС, ОПОП ВО и Учебного плана по направлению 35.03.04 «Агрономия».

Предшествующими курсами, на которых непосредственно базируется дисциплина «Физика» являются школьные курсы физики и математики, а также курс математики в вузе. Поэтому для изучения физики студент должен твердо знать основы этих дисциплин.

Курс физики является основополагающим для изучения следующих дисциплин: физиология и биохимия растений, агрометеорология, почвоведение с основами географии почв, механизация растениеводства, хранение и переработка продукции растениеводства, сельскохозяйственная радиология, сельскохозяйственная экология, безопасность жизнедеятельности.

Особенностью дисциплины является ее базовый характер для большинства предметов профессионального цикла. Это обусловлено тем, что фундаментальные физические законы лежат в основе большинства процессов в растении и окружающей среде (воздухе, воде и почве), а также в основе действия современной технологической и исследовательской аппаратуры. Поэтому знания, полученные при изучении дисциплины «Физика», далее будут использованы, прежде всего, в профессиональной деятельности.

Рабочая программа дисциплины «Физика» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

Требования к результатам освоения учебной дисциплины

No	Код	Содержание	Индикаторы компе-	В результате изучени	я учебной дисциплины об	учающиеся должны:
п/п	компе- тенции	компетенции (или её части)	тенций	знать	уметь	владеть
1.	УК-1	Способен осуществлять по- иск, критический анализ и синтез информации, приме- нять системный подход для решения поставленных задач	УК-1.3 – аргументированно формирует собственные суждения и оценки с использованием си-	современную картину мира на основе естественнонаучных знаний	грамотно и аргументировано излагать свои мысли, ставить цель и выбирать пути ее достижения	обобщения информа- ции, методами наблю-
2.	ОПК-1	Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий	ОПК-1.1 — демон- стрирует знание ос- новных законов ма- тематических, есте- ственнонаучных и общепрофессио- нальных дисциплин, необходимых для решения типовых задач в области аг- рономии	основные физические явления, фундаментальные понятия, законы и теории современной физики	физических процессов, происходящих в почве,	навыками использования основных физических законов в агрономической практике
			ОПК-1.2 – использует знания основных законов математических и естественных наук для решения стандартных задач в агрономии	основные методы проведения и обработки физических измерений	планировать и ставить эксперименты, проводить измерения и оценивать их результаты, делать выводы	навыками работы на лабораторном обору- довании

Таблица 1

4. Структура и содержание дисциплины

4.1 Распределение трудоёмкости дисциплины по видам работ по семестрам

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ и по семестрам представлено в таблице 2.

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 2a Распределение трудоёмкости дисциплины по видам работ по семестрам

		Трудоёмкость
Вид учебной работы	****	В т.ч. по семестрам
	час.	1
Общая трудоёмкость дисциплины по учебному плану	108	108
1. Контактная работа:	54	54
Аудиторная работа		54
в том числе:		
лекции (Л)	18	18
практические занятия (ПЗ)	36	36
2. Самостоятельная работа (СРС)	54	54
самостоятельное изучение разделов, самоподготовка		
(проработка и повторение лекционного материала и ма-	54	54
териала учебников и учебных пособий, подготовка к лабо-		34
раторным и практическим занятиям, коллоквиумам и т.д.)		
Вид промежуточного контроля:		зачет

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 26 Распределение трудоёмкости дисциплины по видам работ по семестрам

		Трудоёмкость
Вид учебной работы	W0.0	В т.ч. по семестрам
	час.	1
Общая трудоёмкость дисциплины по учебному плану	108	108
1. Контактная работа:	10	10
Аудиторная работа	10	10
в том числе:		
лекции (Л)	4	4
практические занятия (ПЗ)	6	6
2. Самостоятельная работа (СРС)	94	94
самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам и т.д.)	94	94
Подготовка к зачету (контроль)	4	4
Вид промежуточного контроля:		зачет

4.2 Содержание дисциплины

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица За

Тематический план учебной дисциплины

Наименование разделов и тем	Всего	Контактн	ая работа	Внеаудиторн
дисциплин (укрупнённо)	Deero	Л	ПЗ	ая работа СР
Раздел 1 «Механика»	24	4	8	12
Раздел 2 «Термодинамика»	24	4	8	12
Раздел 3 «Электродинамика»	24	4	8	12
Раздел 4 «Оптика»	24	4	8	12
Раздел 5 «Квантовая физика»	12	2	4	6
Итого по дисциплине	108	18	36	54

Раздел 1. Механика

Тема 1. Основы кинематики и динамики

Основные характеристики движения. Законы Ньютона. Закон сохранения импульса. Работа и мощность. Закон сохранения энергии. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульса. Энергия вращающегося тела.

Тема 2. Механические колебания. Основы гидродинамики

Гармонические колебания и их характеристики. Затухающие и вынужденные колебания, резонанс. Механические волны. Физические характеристики звуковых волн. Стационарное движение идеальной жидкости, уравнение Бернулли.

Раздел 2. Термодинамика

Тема 3. Первое и второе начала термодинамики. Энтропия

Уравнение состояния идеального газа. Экспериментальные газовые законы. Первое начало термодинамики, теплоемкость. Второе начало термодинамики, энтропия.

Тема 4. Явления переноса. Фазовые превращения. Поверхностное натяжение жидкостей. Осмос

Теплопроводность и конвекция. Диффузия. Фазовые превращения. Фазовые превращения в живых организмах и биотехнологии. Поверхностное натяжение жидкостей. Осмос и осмотическое давление. Значение осмоса для живых организмов.

Раздел 3. Электродинамика

Тема 5. Постоянный электрический ток

Закон Ома, закон Джоуля – Ленца. Электродвижущая сила, правила Кирхгофа. Электрический ток в различных средах.

Тема 6. Электромагнитная индукция. Переменный ток

Электромагнитная индукция. Источники переменного тока. Закон Ома для цепи переменного тока

Раздел 4. Оптика

Тема 7. Геометрическая оптика. Фотометрия

Законы геометрической оптики. Тонкие линзы, микроскоп. Основные фотометрические характеристики.

Тема 8. Волновая оптика. Тепловое излучение

Физические явления, связанные с волновыми свойствами света. Тепловое излучение. Ультрафиолетовое излучение.

Раздел 5. Квантовая физика

Тема 9. Квантовая оптика, фотобиология. Квантовая модель атома. Модель ядра, ядерные реакции, радиоактивность

Кванты света, фотоэффект. Лазеры и их применение в биологии. Элементы фотобиологии. Квантовая модель атома. Модель ядра, ядерные реакции, радиоактивность. Метод меченых атомов в сельском хозяйстве.

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 3б

Тематический план учебной дисциплины

Наименование разделов и тем	Dagge	Контактн	ая работа	Внеаудиторн
дисциплин (укрупнённо)	Всего	Л	ПЗ	ая работа СР
Раздел 1 «Механика»	24	2	-	22
Раздел 2 «Термодинамика»	22	2	-	20
Раздел 3 «Электродинамика»	24	-	2	22
Раздел 4 «Оптика»	24	-	2	22
Раздел 5 «Квантовая физика»	14	_	2	12
Итого по дисциплине	108	4	6	98*

^{*}в том числе подготовка к зачету (контроль)

4.3 Лекции/практические занятия

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 4а

Содержание лекций/ практических занятий и контрольные мероприятия

№ п/п	Название раздела, те- мы	№ и название лекций/ практических занятий	Формируемые компетенции	Вид контрольного мероприятия	Кол-во часов
1.	Раздел 1. Мех	аника	УК-1.3 ОПК-1.1 ОПК-1.2	тестирова- ние	12
	Тема 1. Основы кинематики и	Лекция № 1. Основы кинема- тики и динамики	УК-1.3 ОПК-1.1 ОПК-1.2	опрос	2
	динамики	ПЗ № 1. Основные характеристики движения. Законы Ньютона. Работа и мощность. Законы сохранения импульса и энергии. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульса. Энергия вращающего-	УК-1.3 ОПК-1.1 ОПК-1.2	проверка д/з, опрос	2

№ п/п	Название раздела, те- мы	№ и название лекций/ практических занятий	Формируемые компетенции	Вид контрольного мероприятия	Кол-во часов
		ся тела			
		ПЗ № 2. Измерение коэффи-	УК-1.3	защита	2
		циента трения скольжения	ОПК-1.1		
		_	ОПК-1.2		
	Тема 2. Ме-	Лекция № 2. Механические	УК-1.3	опрос	2
	ханические	колебания. Основы гидроди-	ОПК-1.1	_	
	колебания.	намики	ОПК-1.2		
	Основы	ПЗ № 3. Физический и мате-	УК-1.3	проверка д/з,	2
	гидродина-	матический маятники. Гармо-	ОПК-1.1	опрос	
	мики	нические колебания и их ха-	ОПК-1.2		
		рактеристики. Затухающие и			
		вынужденные колебания, ре-			
		зонанс. Стационарное движе-			
		ние идеальной жидкости,			
		уравнение Бернулли			
		ПЗ № 4. Определение периода	УК-1.3	защита	2
		колебаний физического маят-	ОПК-1.1		
		ника	ОПК-1.2		
2.			УК-1.3	контроль-	12
	Раздел 2. Тер	модинамика	ОПК-1.1	ная работа	
			ОПК-1.2		
	Тема 3. Пер-	Лекция № 3. Первое и второе	УК-1.3	опрос	2
	вое и второе	начала термодинамики. Энтро-	ОПК-1.1		
	начала тер-	пия	ОПК-1.2		
	модинамики.	ПЗ № 5. Уравнение состояния	УК-1.3	проверка д/з,	2
	Энтропия	идеального газа. Эксперимен-	ОПК-1.1	опрос	
		тальные газовые законы. Пер-	ОПК-1.2		
		вое начало термодинамики,			
		теплоемкость. Второе начало			
		термодинамики, энтропия			
		ПЗ № 6. Определение количе-	УК-1.3	защита	2
		ства теплоты, полученного	ОПК-1.1		
		веществом	ОПК-1.2		
	Тема 4. Яв-	Лекция № 4. Явления перено-	УК-1.3	опрос	2
	ления пере-	са. Фазовые превращения. По-	ОПК-1.1		
	носа. Фазо-	верхностное натяжение жид-	ОПК-1.2		
	вые превра-	костей. Осмос			
	щения. По-	ПЗ № 7. Теплопроводность.	УК-1.3	проверка д/з,	2
	верхностное	Диффузия. Фазовые превра-	ОПК-1.1	опрос	
	натяжение	щения. Поверхностное натя-	ОПК-1.2		
	жидкостей.	жение жидкостей. Осмос и			
	Осмос	осмотическое давление. Зна-			
		чение осмоса для живых орга-			
		низмов			
		ПЗ № 8. Оценка теплового по-	УК-1.3	защита	2
		тока через окна в аудитории	ОПК-1.1		
			ОПК-1.2		
3.			УК-1.3		12
	Раздел 3. Эле	ктродинамика	ОПК-1.1	коллоквиум	
			ОПК-1.2		

N₂	Название	№ и название лекций/	Формируемые	Вид	Кол-во
п/п	раздела, те- мы	практических занятий	компетенции	контрольного мероприятия	часов
	Тема 5. По-	Лекция № 5. Постоянный	УК-1.3	опрос	2
	стоянный	электрический ток	ОПК-1.1	_	
	электриче-	_	ОПК-1.2		
	ский ток	ПЗ № 9. Закон Ома. Закон Фа-	УК-1.3	проверка д/з,	2
		радея для электролиза. Закон	ОПК-1.1	опрос	
		Джоуля – Ленца. Расчет стои-	ОПК-1.2		
		мости израсходованной элек-			
		троэнергии			
		ПЗ № 10. Измерение ЭДС и	УК-1.3	защита	2
		внутреннего сопротивления	ОПК-1.1		
		источника тока	ОПК-1.2		
	Тема 6.	Лекция № 6. Электромагнит-	УК-1.3	опрос	2
	Электромаг-	ная индукция. Переменный	ОПК-1.1		
	нитная ин-	ток	ОПК-1.2		
	дукция. Пе-	ПЗ № 11. Закон Ома для цепи	УК-1.3	проверка д/з,	2
	ременный	переменного тока. Работа и	ОПК-1.1	опрос	
	ток	мощность переменного тока	ОПК-1.2		_
		ПЗ № 12. Экспериментальная	УК-1.3	защита	2
		проверка закона Ома для цепи	ОПК-1.1		
		переменного тока	ОПК-1.2		10
4.	D 4.0		УК-1.3	контроль-	12
	Раздел 4. Опт	гика	ОПК-1.1	ная работа	
	Тема 7. Гео-	Поличия № 7. Горманичиства	ОПК-1.2		2
		Лекция № 7. Геометрическая	УК-1.3	опрос	2
	метрическая оптика. Фо-	оптика. Фотометрия	ОПК-1.1 ОПК-1.2		
		ПЗ № 13. Законы геометриче-	УК-1.3	наоровио н/о	2
	тометрия	ской оптики. Тонкие линзы,	УК-1.3 ОПК-1.1	проверка д/з,	2
		микроскоп. Фотометрия	ОПК-1.1	опрос	
		ПЗ № 14. Измерение фотомет-	УК-1.3	защита	2
		рических характеристик по-	ОПК-1.1	защита	2
		мещения	ОПК-1.2		
	Тема 8. Вол-	Лекция № 8. Волновая оптика.	УК-1.3	опрос	2
	новая опти-	Тепловое излучение	ОПК-1.1	onpo c	_
	ка. Тепловое		ОПК-1.2		
	излучение	ПЗ № 15. Разрешающая спо-	УК-1.3	проверка д/з,	2
	,	собность оптических прибо-	ОПК-1.1	опрос	
		ров. Тепловое излучение	ОПК-1.2	•	
		ПЗ № 16. Определение разре-	УК-1.3	защита	2
		шающей способности сухого и	ОПК-1.1	·	
		иммерсионного объектива	ОПК-1.2		
		микроскопа			
5.			УК-1.3	тестирова-	6
	Раздел 5. Ква	нтовая физика	ОПК-1.1	ние	
			ОПК-1.2		
	Тема 9.	Лекция № 9. Квантовая опти-	УК-1.3	опрос	2
	Квантовая	ка. Фотобиология. Квантовая	ОПК-1.1		
	оптика. Фо-	модель атома. Модель ядра,	ОПК-1.2		
	тобиология.	ядерные реакции, радиоактив-			
	Квантовая	ность. Метод меченых атомов			

№ п/п	Название раздела, те- мы	№ и название лекций/ практических занятий	Формируемые компетенции	Вид контрольного мероприятия	Кол-во часов
	модель ато-	в сельском хозяйстве			
	ма. Модель	ПЗ № 17. Кванты света, фото-	УК-1.3	проверка д/з,	2
	ядра, ядер-	эффект. Лазеры и их приме-	ОПК-1.1	опрос	
	ные реак-	нение в биологии. Фотобиоло-	ОПК-1.2	_	
	ции, радио-	гические реакции. Ядерные			
	активность.	реакции, радиоактивность.			
	Метод ме-	Метод меченых атомов в			
	ченых ато-	сельском хозяйстве			
	мов в сель-	ПЗ № 18. Виртуальный прак-	УК-1.3	защита	2
	ском хозяй-	тикум «Спектр атома водоро-	ОПК-1.1		
	стве	да»	ОПК-1.2		

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 46 Содержание лекций/ практических занятий и контрольные мероприятия

№ п/п	Название раздела, те- мы	№ и название лекций/ практических занятий	Формируемые компетенции	Вид контрольного мероприятия	Кол-во часов
1.	Раздел 1. Мех	ханика	УК-1.3 ОПК-1.1 ОПК-1.2	тестирова- ние	2
	Тема 1. Основы кинематики и динамики	Лекция № 1. Основы кинематики и динамики	УК-1.3 ОПК-1.1 ОПК-1.2	опрос	2
2.	Раздел 2. Тер	модинамика	УК-1.3 ОПК-1.1 ОПК-1.2	контроль- ная работа	2
	Тема 3. Первое и второе начала термодинамики. Энтропия	Лекция № 2. Первое и второе начала термодинамики. Энтропия	УК-1.3 ОПК-1.1 ОПК-1.2	опрос	2
3.	Раздел 3. Эле	ктродинамика	УК-1.3 ОПК-1.1 ОПК-1.2	коллоквиум	2
	Тема 5. По- стоянный электриче- ский ток	ПЗ № 1. Закон Ома. Закон Фарадея для электролиза. Закон Джоуля — Ленца. Расчет стоимости израсходованной электроэнергии	УК-1.3 ОПК-1.1 ОПК-1.2	проверка д/з, опрос	2
4.	Раздел 4. Опт	гика	УК-1.3 ОПК-1.1 ОПК-1.2	контроль- ная работа	2
	Тема 7. Гео- метрическая оптика. Фо- тометрия	ПЗ № 2. Законы геометрической оптики. Тонкие линзы, микроскоп. Фотометрия	УК-1.3 ОПК-1.1 ОПК-1.2	проверка д/з, опрос	2
5.	Раздел 5. Ква	нтовая физика	УК-1.3	тестирова-	2

№ п/п	Название раздела, те- мы	№ и название лекций/ практических занятий	Формируемые компетенции	Вид контрольного мероприятия	Кол-во часов
			ОПК-1.1	ние	
			ОПК-1.2		
	Тема 9.	ПЗ № 3. Кванты света, фото-	УК-1.3	проверка д/з,	2
	Квантовая	эффект. Лазеры и их приме-	ОПК-1.1	опрос	
	оптика. Фо-	нение в биологии. Фотобиоло-	ОПК-1.2		
	тобиология.	гические реакции. Ядерные			
	Квантовая	реакции, радиоактивность.			
	модель ато-	Метод меченых атомов в			
	ма. Модель	сельском хозяйстве			
	ядра, ядер-				
	ные реак-				
	ции, радио-				
	активность.				
	Метод ме-				
	ченых ато-				
	мов в сель-				
	ском хозяй-				
	стве				

ОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 5а **Перечень вопросов для самостоятельного изучения дисциплины**

№ п/п	Название раздела, темы	Перечень рассматриваемых вопросов для самостоятельного изучения		
Разд	ел 1. Механика			
1.	Тема 1. Основы кинематики и динамики	Движение тел в поле тяжести Земли (свободное падение). Инерциальные и неинерциальные системы отсчета. Силы инерции. Закон всемирного тяготения. Статика (УК-1.3, ОПК-1.1, ОПК-1.2)		
2.	Тема 2. Механические колебания. Основы гидродинамики	Механические волны и их характеристики (УК-1.3, ОПК-1.1, ОПК-1.2)		
Разд	Раздел 2. Термодинамика			
3.	Тема 3. Первое и второе начала термодинамики. Энтропия	Живой организм как тепловая машина. Статистический смысл энтропии (УК-1.3, ОПК-1.1, ОПК-1.2)		
4.	Тема 4. Явления переноса. Фазовые превращения. Поверхностное натяжение жидкостей. Осмос	Конвекция. Примеры явлений переноса в окружающей среде и в живых организмах. Капиллярные явления в живых организмах. Примеры осмотического эффекта в живых организмах (УК-1.3, ОПК-1.1, ОПК-1.2)		
Разд	ел 3. Электродинамика			
5.	Тема 5. Постоянный электриче- ский ток	Расчет электрических цепей с помощью правил Кирхгофа. Влияние постоянного тока на растения (УК-1.3, ОПК-1.1, ОПК-1.2)		
6.	Тема 6. Электромагнитная индукция. Переменный ток	Характер воздействия переменного тока на живой организм (УК-1.3, ОПК-1.1, ОПК-1.2)		
Разд	Раздел 4. Оптика			

№ п/п	Название раздела, темы	Перечень рассматриваемых вопросов для самостоятельного изучения
7.	Тема 7. Геометрическая оптика. Фотометрия	Примерные нормы освещенности на с/х объектах (УК-1.3, ОПК-1.1, ОПК-1.2)
8.	Тема 8. Волновая оптика. Тепловое излучение	Классификация электромагнитных волн. Биологическое действие спектральных диапазонов солнечного света на растения (УК-1.3, ОПК-1.1, ОПК-1.2)
Разд	ел 5. Квантовая физика	
9.	Тема 9. Квантовая оптика. Фото- биология. Квантовая модель ато- ма. Модель ядра, ядерные реак- ции, радиоактивность. Метод ме- ченых атомов в сельском хозяй- стве	Корпускулярно-волновой дуализм. Действие лазерного излучения на организм. Квантовые числа и их физический смысл. Радиационные методы датирования (УК-1.3, ОПК-1.1, ОПК-1.2)

ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ

Таблица 56 **Перечень вопросов для самостоятельного изучения дисциплины**

No	Название раздела, темы	Перечень рассматриваемых вопросов для		
п/п		самостоятельного изучения		
Разд	Раздел 1. Механика			
1.	Тема 1. Основы кинематики и динамики	Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульса. Энергия вращающегося тела (УК-1.3, ОПК-1.1, ОПК-1.2)		
2.	Тема 2. Механические колебания. Основы гидродинамики	Физический и математический маятники. Гармонические колебания и их характеристики. Затухающие и вынужденные колебания, резонанс. Стационарное движение идеальной жидкости, уравнение Бернулли (УК-1.3, ОПК-1.1, ОПК-1.2)		
	ел 2. Термодинамика			
3.	Тема 3. Первое и второе начала термодинамики. Энтропия	Второе начало термодинамики, энтропия. Живой организм как тепловая машина. Статистический смысл энтропии (УК-1.3, ОПК-1.1, ОПК-1.2)		
4.	Тема 4. Явления переноса. Фазовые превращения. Поверхностное натяжение жидкостей. Осмос	Осмос и осмотическое давление. Значение осмоса для живых организмов (УК-1.3, ОПК-1.1, ОПК-1.2)		
Разд	ел 3. Электродинамика			
5.	Тема 5. Постоянный электриче- ский ток	Расчет электрических цепей с помощью правил Кирхгофа. Влияние постоянного тока на растения (УК-1.3, ОПК-1.1, ОПК-1.2)		
6.	Тема 6. Электромагнитная индукция. Переменный ток	Закон Ома для цепи переменного тока. Работа и мощность переменного тока. Характер воздействия переменного тока на живой организм (УК-1.3, ОПК-1.1, ОПК-1.2)		
Раздел 4. Оптика				
7.	Тема 7. Геометрическая оптика. Фотометрия	Примерные нормы освещенности на с/х объектах (УК-1.3, ОПК-1.1, ОПК-1.2)		
8.	Тема 8. Волновая оптика. Тепло-	Классификация электромагнитных волн. Биологи-		

№ п/п	Название раздела, темы	Перечень рассматриваемых вопросов для самостоятельного изучения
	вое излучение	ческое действие спектральных диапазонов солнечного света на растения. Разрешающая способность оптических приборов. Тепловое излучение (УК-1.3, ОПК-1.1, ОПК-1.2)
Разд	ел 5. Квантовая физика	
9.	Тема 9. Квантовая оптика. Фото- биология. Квантовая модель ато- ма. Модель ядра, ядерные реак- ции, радиоактивность. Метод ме- ченых атомов в сельском хозяй- стве	Ядерные реакции, радиоактивность. Радиационные методы датирования. Метод меченых атомов в сельском хозяйстве (УК-1.3, ОПК-1.1, ОПК-1.2)

5. Образовательные технологии

Таблица 6 **Применение активных и интерактивных образовательных технологий**

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий (форм обучения)	
1.	Тема 1. Основы кинематики и дина- мики Виртуальный практикум	Л	Работа с интерактивной моделью «свободное падение» из обучающей программы 9.1. Ситуационная задача	
2.	Тема 2. Механические колебания. Основы гидродинамики Виртуальный семинар	Л	Работа с интерактивной моделью «течение жид- кости в горизонтальной трубе» из обучающей программы 9.1. Ситуационная задача	
3.	Тема 3. Первое и второе начала термодинамики. Энтропия Практическая работа «Определение количества теплоты, полученной телом»	ПЗ	Ситуационная задача с использованием компьютеризированных средств сбора и обработки информации с датчиков температуры	
4.	Тема 5. Постоянный электрический ток Виртуальный практикум	ПЗ	Виртуальный практикум по расчету электрических цепей с помощью правил Кирхгофа из обучающей программы 9.1. Ситуационная задача	
5.	Тема 7. Геометрическая оптика. Фотометрия Виртуальный практикум	ПЗ	Виртуальный практикум по построениям изображений в тонких линзах из обучающей программы 9.1. Ситуационная задача	
6.	Тема 8. Волновая оптика Виртуальный семинар	ПЗ	Работа с интерактивными моделями по волновой оптике из обучающей программы 9.1. Обзорная дискуссия	
7.	Тема 9. Квантовая оптика. Фотобио- логия. Квантовая модель атома. Мо- дель ядра, ядерные реакции, радиоак- тивность. Метод меченых атомов в сельском хозяйстве	Л	Работа с интерактивными моделями «лазер» и «атом водорода» из обучающей программы 9.1. Круглый стол	

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности

Типовой вариант контрольной работы.

- 1. Температура комнаты была $t_1 = 10$ °C. После того как печь натопили, температура в комнате стала $t_2 = 20$ °C. Объем комнаты V = 50 м³, давление в ней P = 97 кПа. На сколько изменилась масса воздуха, находящегося в комнате? Молярная масса воздуха $\mu = 29$ г/моль.
- 2. Вечером при температуре $t_1 = 20$ °C относительная влажность воздуха f = 0,6. Выпадет ли ночью роса на траве, если температура вблизи поверхности почвы понизится до 1) $t_2 = 15$ °C; 2) $t_2 = 10$ °C?
- 3. Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу A = 73.5 кДж. Температура нагревателя $t_1 = 100$ °C, температура холодильника $t_2 = 0$ °C. Найти КПД цикла, количество теплоты, получаемое машиной от нагревателя и количество теплоты, отдаваемое холодильнику за один цикл.
- 4. В настоящее время промышленные отходы, как правило, закапывают в землю. При этом в процессе разложения иногда образуются ядовитые газы, например, метан. Оценить поток метана в результате диффузии через поверхность земли, если полость с газом расположена на глубине h=1 м, парциальное давление газа в ней $P=10^5$ Па, а температура T=300 К. Коэффициент диффузии газа в почве $D_{\Pi}=0.05$ см $^2/c$.

Типовые тестовые задания.

1. Предел разрешения микроскопа с использованием иммерсионной жидкости
(увеличивается, уменьшается, не меняется).
2. В растениях происходят следующие фотобиологические реакции: 1);
2); 3)
3. Наименьшую биологическую активность (практически не участвуют в процессе фотосин-
теза) имеют лучи цвета.
4. Наибольшую биологическую активность (максимально участвуют в процессе фотосинте-
за) имеют лучи и цветов.
5. Запишите структурные части атома.
6. Энергия ионизации атома водорода равна эВ.
7. Законы, выполняющиеся в ядерных реакциях:
8. Виды радиоактивности:
9. Сколько процентов радиоактивных ядер останется через два периода полураспада?
$10. C^{12}$ и C^{14} – это

Вопросы к устному опросу (текущий контроль).

- 1. Что изучает кинематика? Что изучает динамика? Что такое материальная точка?
- 2. Ознакомьтесь с таблицей приложения 1 к главе I и переведите размеры биологических объектов в систему СИ.
- 3. Длина МКАД 109 км. Автомобиль сделал два круга. Чему равны пройденный автомобилем путь и его перемещение?
- 4. Напишите формулы для средней и мгновенной скорости, а также мгновенного ускорения и дайте определения этих величин.
- 5. Трактор разгоняется, а затем тормозит. Какой знак имеет при этом его ускорение?
- 6. Напишите формулы для угловой скорости и углового ускорения и дайте определения этих величин. В каких единицах они измеряются? Что такое частота вращения?
- 7. Какой физический смысл имеют нормальное и тангенциальное ускорение?

- 8. При включении сепаратор разгоняется, а при выключении тормозит. Какой знак имеет при этом тангенциальное ускорение точек обода сепаратора? Нарисуйте направление этого вектора в обоих случаях. Куда направлен при этом вектор нормального ускорения?
- 9. Сформулируйте три закона Ньютона. Как называется сила, входящая во второй закон Ньютона? Приведите примеры сил, действующих в природе. Какое значение они имеют для живых организмов и технических средств?
- 10. Сформулируйте закон сохранения импульса. В каких процессах он выполняется?
- 11. Напишите формулы для механической работы и мощности и дайте определения этих величин. В каких единицах они измеряются?
- 12. Два одинаковых трактора за одинаковое время вспахали разные участки поля: один -50 га, второй -80 га. Какой из них развил большую мощность, если структура почвы на обоих участках одинаковая? Ответ обоснуйте.
- 13. Два одинаковых трактора одновременно вспахали одинаковые по площади участки поля. Какой из них развил большую мощность, если почва на первом участке песчаная, а на втором глинистая? Ответ обоснуйте.
- 14. Назовите виды механической энергии. Какой физический смысл они имеют? Сформулируйте закон сохранения энергии. Куда «уходит» часть механической энергии во всех реальных процессах?
- 15. Сформулируйте закон динамики вращательного движения твердого тела и дайте определение входящим в него физическим величинам.
- 16. Какой физический смысл имеет момент инерции?
- 17. Имеются две центрифуги одинаковой массы, но разного радиуса. Какую из них легче раскрутить?
- 18. Что такое момент импульса твердого тела? Сформулируйте закон сохранения момента импульса и приведите примеры, где он выполняется.
- 19. В процессе горения солнце ежесекундно теряет огромную массу вещества. Как этот факт отражается на скорости вращения солнца вокруг своей оси?
- 20. Как найти кинетическую энергию катящегося без проскальзывания колеса?
- 21. Ознакомьтесь с приложением 2 к этой главе и скажите, для чего бактериям жгутики, и как они ими пользуются.

Вопросы к коллоквиуму.

- 1. Дайте определение электрического тока.
- 2. Сформулируйте закон Ома для участка цепи без источника тока.
- 3. Имеется два алюминиевых провода: длина и диаметр первого в 2 раза больше, чем второго. У какого провода больше сопротивление и во сколько раз?
- 4. Сформулируйте закон Джоуля Ленца. Напишите формулы мощности постоянного тока и скажите, почему для пропускания больших токов используют толстые провода.
- 5. Имеется два нагревателя с разными сопротивлениями спирали. У какого из них больше мощность?
- 6. Что такое ЭДС, как она возникает, и какую имеет размерность?
- 7. Сформулируйте закон Ома для участка цепи с источником тока, а также закон Ома для замкнутой цепи.
- 8. Чем обусловлена хорошая проводимость металлов? Как зависит удельное сопротивление металлов от температуры?
- 9. Объясните механизм проводимости в полупроводниках. Как зависит удельное сопротивление полупроводников от температуры?
- 10. Что такое полупроводники n- и p-типов? Приведите примеры применения полупроводниковых приборов.
- 11. Какие растворы называют электролитами, а какие неэлектролитами? Приведите примеры.
- 12. Объясните механизм проводимости в электролитах. Как зависит удельное сопротивление электролитов от температуры?
- 13. Почему вода является хорошим растворителем? Приведите пример.

- 14. Что такое степень диссоциации электролита? Какие электролиты называют сильными, и какие слабыми?
- 15. Приведите пример электролиза и выведите закон Фарадея для этого процесса. Где используется этот закон?
- 16. Ознакомьтесь с приложением 1 к главе III и скажите, как влияет электрический ток на растения.
- 17. Пользуясь приложением 2 к главе III, объясните, как возникает молния, и подумайте, как оценить расстояние до разряда.
- 18. Дайте определение магнитного потока. В каких единицах он измеряется?
- 19. Сформулируйте закон электромагнитной индукции Фарадея и правило Ленца. Приведите примеры. В каких единицах измеряется ЭДС индукции?
- 20. Какое напряжение будет на вторичной обмотке понижающего трансформатора с коэффициентом трансформации 0,2, если на первичную обмотку подать переменное напряжение 220 В? А если подать постоянное напряжение 50 В? Ответ обоснуйте.
- 21. Какой будет частота переменного тока на вторичной обмотке, если частота тока на первичной обмотке $50 \, \Gamma$ ц?
- 22. Опишите принцип действия трехфазного генератора переменного тока.
- 23. С какой частотой вращается турбина на тепловой электростанции?
- 24. Как объяснить ситуации, когда в одних квартирах дома есть электричество, а в других нет?
- 25. Пользуясь схемой «звезда», докажите, что если фазное напряжение 220 В, то линейное будет 380 В.
- 26. Напишите закон Ома для цепи переменного тока, содержащей последовательно соединенные резистор, конденсатор и катушку, и назовите входящие в него физические величины.
- 27. Выведите формулу для средней мощности и работы переменного тока.
- 28. Почему мощность электронагревательных приборов, работающих от сети переменного тока, рассчитывают по тем же формулам, что и для постоянного?
- 29. Если сразу не отключить электродрель в случае заклинивания сверла в материале, может сгореть обмотка ее электродвигателя. Почему так происходит?
- 30. Как вы думаете, какие ткани организма человека и высших животных наиболее чувствительны к электрическому току?
- 31. Пользуясь таблицей приложения 3 к главе III, скажите, как реагирует организм человека на увеличение силы тока. Сравните при этом действие переменного и постоянного тока.
- 32. Для уничтожения вредителей зерна, например, жучков и их личинок используют высокочастотное электромагнитное поле. При этом жучки и личинки погибают, а зерна остаются живыми. Объясните, почему так происходит, считая, что удельное сопротивление насекомых меньше удельного сопротивления зерна.

Вопросы к зачету

- 1. Основные характеристики движения материальной точки (общий случай)
- 2. Прямолинейное движение и движение по окружности
- 3. Законы Ньютона. Примеры сил, действующих в природе. Закон сохранения импульса
- 4. Работа и мощность. Закон сохранения энергии
- 5. Основное уравнение (закон) динамики вращательного движения твердого тела. Теорема Гюйгенса Штейнера
- 6. Закон сохранения момента импульса. Энергия вращающегося тела
- 7. Гармонические колебания и их характеристики
- 8. Затухающие и вынужденные колебания. Резонанс
- 9. Основные уравнения гидростатики
- 10. Основные уравнения гидродинамики
- 11. Уравнение состояния идеального газа. Экспериментальные газовые законы
- 12. Первое начало термодинамики. Теплоемкость
- 13. Второе начало термодинамики. Энтропия

- 14. Явления переноса: теплопроводность и диффузия
- 15. Фазовые превращения
- 16. Поверхностное натяжение жидкостей
- 17. Осмос и осмотическое давление. Значение осмоса для живых организмов
- 18. Закон Ома для участка цепи. Работа и мощность тока. Закон Джоуля Ленца
- 19. Электродвижущая сила. Закон Ома для замкнутой цепи
- 20. Электрический ток в металлах и полупроводниках
- 21. Электрический ток в электролитах
- 22. Электромагнитная индукция. Закон Фарадея. Правило Ленца
- 23. Переменный ток. Закон Ома для цепи переменного тока
- 24. Световые волны. Принцип распространения световых волн
- 25. Законы геометрической оптики
- 26. Тонкие линзы и их характеристики. Микроскоп
- 27. Основные фотометрические характеристики
- 28. Физические явления, связанные с волновыми свойствами света. Разрешающая способность микроскопа
- 29. Тепловое излучение
- 30. Влияние спектральных диапазонов света на растения
- 31. Корпускулярные свойства света. Фотобиологические реакции
- 32. Квантовая модель атома
- 33. Строение атомного ядра. Ядерные реакции. Радиоактивность. Метод меченых атомов в сельском хозяйстве

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Критерии оценивания результатов обучения Зачет

Таблица 7

Оценка	Критерии оценивания		
	Теоретическое и практическое содержание курса освоено полностью,		
	компетенции сформированы, все предусмотренные программой обу-		
«зачтено»	чения учебные задания выполнены с незначительными замечаниями.		
	Умения и навыки применяются студентом для решения практических		
	задач с незначительными ошибками, исправляемыми студентом са-		
	мостоятельно.		
	Теоретическое и практическое содержание курса не освоено, компе-		
«незачтено»	тенции не сформированы, из предусмотренных программой обучения		
«нсзачтено»	учебных заданий либо выполнено менее 60%, либо содержит грубые		
	ошибки, приводящие к неверному решению; Умения и навыки сту-		
	дент не способен применить для решения практических задач.		

7. Учебно-методическое и информационное обеспечение дисциплины 7.1 Основная литература

- 1. Грабовский Р.И. Курс физики. C-Пб.: Лань, 2012. 608 c.
- 2. Грабовский Р.И. Сборник задач по физике. С-Пб.: Лань, 2022. 128 с.
- 3. Иванов И.В. Сборник задач по общему курсу физики. Калуга: КФ РГАУ-МСХА, 2005. 95 с.

- 4. Иванов И.В., Лаломова Т.В., Пронин Б.В. Сборник задач по физике и биофизике. М.: РГАУ-МСХА, 2008. 64 с.
- 5. Иванов И.В. Краткий курс лекций по физике. Калуга: КФ РГАУ-МСХА, $2020.-116~\mathrm{c}.$

7.2 Дополнительная литература

- 1. Трофимова Т.И. Курс физики. M.: Академия, 2006. 560 c.
- 2. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука, 1985. 384 с.
- 3. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике. М.: Наука, 1984. 383 с.
- 4. Енохович А.С. Справочник по физике и технике. М.: Просвещение, 1989. 224 с.
- 5. Каку М. Физика будущего. М.: Альпина нон-фикшн, 2018. 584 с.

7.3 Методические указания, рекомендации и другие материалы к занятиям

- 1. Иванов И.В. Руководство к лабораторным работам по физике. Калуга: КФ РГАУ-МСХА, 2009. 48 с.
- 2. Иванов И.В. Методические указания по изучению дисциплины «Физика» для студентов по направлению подготовки 35.03.04 «Агрономия». Калуга: КФ РГАУ-МСХА, 2017. 18 с.
- 3. Олейник А.И., Родкина Л.Р., Шавлюгин А.И., Шмакова Е.Э. Физика: лабораторный практикум. Владивосток: Изд-во ВГУЭС, 2005. 100 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Научная электронная библиотека http://www.elibrary.ru.
- 2. Научно-популярный журнал по физике «Потенциал» http://www.potential.ru.

9. Перечень программного обеспечения и информационных справочных систем

- 1. Обучающие компьютерные программы «Открытая физика 1.1» и «Открытая физика 2.5» для проведения физического практикума в группах и самостоятельной работы студентов (© ООО «Физикон», г. Долгопрудный, 2002, 2003).
- 2. Обучающая компьютерная программа «Открытая биология 2.5» для сопровождения лекционных и практических занятий в группах и самостоятельной работы студентов (© ООО «Физикон», г. Долгопрудный, 2003).
- 3. Компьютерная программа для проверки остаточных знаний (тестирования) студентов по физике (© И.В. Иванов, 2011).

Перечень программного обеспечения

№ п/п	Наименование раздела учеб- ной дисци- плины	Наименование программы	Тип программы	Автор	Год разработки
1.	Все разделы	«Открытая физика 1.1», «Открытая физи- ка 2.5»	Обучающие, с интерактивными моделями и виртуальным практикумом	ООО «Физи- кон», г. Дол- гопрудный	2002, 2003
2.	Разделы 2, 4, 5	«Открытая биология 2.5»	Обучающая, с интерактивными моделями	ООО «Физи- кон», г. Дол- гопрудный	2003
3.	Все разделы	Программа для проверки остаточных знаний по физике	Компьютерный тест на 3 варианта	Иванов И.В.	2011

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 9 Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

Наименование специальных по- мещений и помещений для само- стоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы	
Лекционная аудитория (каб. № 101н)	Стационарное мультимедийное оборудование	
Лаборатория физики (каб. № 334н)	Портативная метеостанция (1 шт.); компьютеризированный цифровой прибор ПКЦ-3К с методическим обеспечением (1 шт.); компьютер (1 шт.); комплекты лабораторных работ по механике (10 шт.) и электродинамике (10 шт.) с методическим обеспечением.	

11. Методические рекомендации студентам по освоению дисциплины

Курс физики достаточно объемный, однако рассчитан на один семестр, поэтому самостоятельные занятия должны быть довольно интенсивными.

Подготовка к текущим практическим занятиям заключается в изучении лекции для подготовки к опросу и выполнения домашнего задания. В среднем на это требуется 2-3 часа в зависимости от объема и уровня сложности темы. Для подготовки к контрольной работе, коллоквиуму или тесту требуется в среднем 4 часа.

Особенностью данной дисциплины является тесная связь физических законов с процессами в растении, продукции растениеводства и окружающей среде (воздухе, воде и почве) и принципами действия современной технологической и исследовательской аппаратуры. Поэтому, разбирая каждую тему,

необходимо, во-первых, понять физические законы или формулы и, во-вторых, научиться их использовать для описания процессов в растениях, окружающей среде или в современном сельскохозяйственном оборудовании.

Наиболее тщательного рассмотрения требуют вопросы, касающиеся физических явлений в растениях и почве: теплопроводность, диффузия, осмос, капиллярные явления, фотобиологические реакции. Обратить внимание на метод меченых атомов в растениеводстве. Необходимо помнить, что в агрономической практике любой специалист встретится если не со всеми, то с большинством из этих вопросов.

Для уяснения материала желательно пользоваться обучающими компьютерными программами по физике из п. 9, которые содержат помимо теоретической информации большое количество интерактивных моделей.

Виды и формы отработки пропущенных занятий

Студент, пропустивший занятия обязан его отработать. Отработка занятий осуществляется в соответствии с графиком консультаций.

Пропуск лекционного занятия студент отрабатывает самостоятельно и представляет ведущему преподавателю конспект лекций по пропущенным занятиям.

Пропуск практического занятия студент отрабатывает под руководством ведущего преподавателя дисциплины.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

В курсе «Физика» помимо традиционных используются следующие образовательные и информационные технологии.

- Сопровождение лекций и практических занятий интерактивными тематическими демонстрациями из указанного в п. 9 программного обеспечения.
 Например, при изучении закона сохранения момента импульса показываем интерактивную модель «скамья Жуковского».
- На одном или двух практических занятиях демонстрируются современные методы сбора данных с измерительных датчиков. Например, проводим измерение температуры тающего льда и образовавшейся воды с записью данных с датчиков температуры на компьютер и одновременным построением графика зависимости температуры от времени.
- Общие и индивидуальные домашние задания, в частности нестандартные, где нужно самим найти способ решения задачи и подобрать данные из справочников или из Интернета.
- Проверка остаточных знаний студентов на компьютере с помощью программы, указанной в п. 9.

Особенностью преподавания данной дисциплины является необходимость на аудиторных занятиях показывать студентам связь физических законов с процессами в растении, продукции растениеводства и окружающей среде (воздухе, воде и почве) и принципами действия современной технологической

и исследовательской аппаратуры. Например, сначала объясняем осмотический эффект, а затем переходим к его роли в питании растений.

Наиболее тщательного рассмотрения требуют вопросы, касающиеся физических явлений в растениях и почве: теплопроводность, диффузия, осмос, капиллярные явления, фотобиологические реакции. Особое внимание следует уделить методу меченых атомов в растениеводстве. Необходимо подчеркивать, что в агрономической практике любой специалист встретится если не со всеми, то с большинством из этих вопросов.

В части самостоятельной работы студентов целесообразно оптимально подбирать объем и уровень сложности домашних заданий, контрольных работ и тестов и тщательно анализировать результаты их выполнения.

Для поддержания интереса к дисциплине можно предоставить студентам возможность работать с обучающими программами из п. 9 во внеучебное время, например, в компьютерном классе или на компьютерах кафедры, а также проводить еженедельные индивидуальные консультации с отстающими и талантливыми студентами.

Студенты, пропустившие занятия, обязаны их отработать во внеурочное время на еженедельных дополнительных занятиях (текущих консультациях).

Программу разработал: Иванов И.В., к.ф-м.н., доцент