Документ подписан простой электронной подписью Информация о владельне:
ФИО: Малахова

Должность: Ди Дата подписан

Уникальный про

cba47a2f4b9180af2

^{триевна}нистерство сельского хозяйства российской федерации

7:42:3 РЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ—

МСХА имени К.А. ТИМИРЯЗЕВА»

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Калужский филиал

Факультет Агротехнологий, инженерии и землеустройства Кафедра Механизации сельскохозяйственного производства

УТВЕРЖДАЮ:

И.о.зам. директора по учебной работе

Т.Н. Пимкина

16 06.

2022 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА ПО ДИСЦИПЛИНЕ Б1.О.30 ТЕХНОЛОГИЯ РЕМОНТА МАШИН

для подготовки бакалавров

Направление: 35.03.06 Агроинженерия

Направленность: Технический сервис в АПК

Kypc 4

Семестр 7

Форма обучения очная, заочная

Разработчик: А.И. Пономарев, к.т.н., доцент кафедры Механизации сельскохозяйственного производства КФ РГАУ-МСХА им. К.А. Тимирязева. татиоданные йындалта йынынангода, состубу об от 2022 г. Кодинцев Н.П.: канд. техн. наук, доцент кафедры Механизации сельскохозяйственного производства КФ РГАУ-МСХА им. К.А. Ти-«16» Об 2022 г. Методические указания обсуждены на заседании кафедры Механизации сельскохозяйственного производства протокол № 9 от « 16» об 2022 г. Зав. кафедрой Ф.Л. Чубаров «/6 » об. 2022 г. Согласовано: Начальник УМЧ И.о. декана факультета Агротехнологий, *le* О.И. Сюняева инженерии и землеустройства «16» Об 2022 г. Председатель учебно-методической комиссии по направлению 35.03.06 Агроинженерия «16» 06. 2022 г.

СОДЕРЖАНИЕ

АННОТАЦИЯ	4
1. Цель и задачи курсового проекта	4
2. Перечень планируемых результатов выполнения курсовой работы (проекта) по	
дисциплине «Технология ремонта машин», соотнесенных с планируемыми результатами	
освоения образовательной программы	5
3. Структура курсовой работы	
4. Порядок выполнения курсовой работы/проекта	7
4.1 Выбор темы	
4.2 Составление плана выполнения курсовой работы	7
4.3 Требования к разработке структурных элементов курсовой работы/проекта	
4.3.1 Разработка введения	
4.3.2 Разработка основной части курсовой работы/проекта	
4.4.3 Разработка заключения/выводов	
5. Требования к оформлению курсовых работ/проектов	
5.1 Оформление текстового материала (ΓOCT 7.0.11 – 2011)	
5.2 Оформление ссылок <i>(ГОСТР 7.0.5)</i>	
5.3 Оформление иллюстраций <i>(ГОСТ 2.105-95)</i>	
5.4 Общие правила представления формул (ГОСТ 2.105-95)	10
5.5 Оформление таблиц <i>(ГОСТ 2.105-95)</i>	
5.6 Электронные ресурсы	
5.7 Оформление графических материалов	
5.8 Оформление приложений <i>(ГОСТ 2.105-95)</i>	
5.9 Требования к лингвистическому оформлению курсовой работы/проекта	
5.10. Порядок защиты курсовой работы/проекта	
6. Пример выполнения курсовой работы/проекта	
7. Учебно-методическое и информационное обеспечение курсовой работы (проекта)	
8. Методическое, программное обеспечение курсовой работы/проекта	
8.1 Методические указания и методические материалы к курсовой работе	
8.2 Перечень программного обеспечения и информационных справочных систем (при	
необходимости) для выполнения курсовой работы/проекта	51
Приложение А	
Приложение Б	
Приложение В	54
Приложение Г	55
Приложение Д	
Приложение Е	
Расчетно-организационная часть	
- -	
Приложение Ж	60

АННОТАЦИЯ

курсового проекта учебной дисциплины Б1.О.30 Технология ремонта машин

для подготовки бакалавра по направлению 35.03.06 Агроинженерия направленности Технический сервис в АПК

Машины сельскохозяйственного назначения играют огромную роль в хозяйственной деятельности человека. К числу наиболее распространенных относятся колесные машины (КМ), имеющие разнообразное конструктивное и технологическое назначение и обеспечивающие большую часть транспортных и технологических операций. В связи с чем, при подготовке квалифицированных кадров по направлению 35.03.06 Агроинженерия основополагающее место занимает изучение курса «Технология ремонта машин» как дисциплины, обобщающей связь между общетехническими предметами и специальными.

Курсовая работа/проект имеет *конструкторско - технологический* характер и представляет собой творческую и самостоятельную работу студента.

Методические указания для выполнения курсового проекта имеют своей целью научить студентов системному подходу к решению комплексных вопросов, связанных с расчетом и модернизацией систем, агрегатов, узлов и механизмов, правильно применять теоретические знания, практические навыки и умения, обучить студентов навыкам использования руководящей, патентной и справочной информацией, знанию основных положений стандартов ЕСКД, закрепить знания, полученные при изучении общетехнических и специальных дисциплин, а также обеспечить единообразное оформление курсовых проектов без ограничения творческих инициатив студентов.

1. Цель и задачи курсового проекта

Выполнение курсового проекта по дисциплине «Технология ремонта машин» для направления подготовки 35.03.06 Агроинженерия направленности «Технический сервис в АПК» проводится с целью сформировать общие профессиональные знания и навыки в области проектирования и организации технологических процессов ремонта; закрепления, систематизации и расширения теоретических и практических знаний по специальности и применение этих знаний для решения конкретных научных, технических и технологических задач; развитие навыков самостоятельной работы и овладение методикой исследования при выполнении проектных заданий.

Курсовой проект позволяет решить следующие задачи:

Цели проектирования

- формирование навыков выполнения конструкторско-технологических расчетов и оформления соответствующей документации при проектировании и разработке технологических процессов ремонта;
- формирование навыков технического нормирования технологических операций в определенных производственных условиях;
- формирование навыков технологической подготовки производства продукции требуемого уровня качества;

Задачи проектирования:

- рассчитать основные показатели ремонтного производства и спроектировать ремонтный участок;
- спроектировать технологический процесс разборки узла наземного транспортного средства;
 - разработать технологию сборки отдельного узла наземного транспортного средства;
 - разработать технологию восстановления детали наземного транспортного средства;
 - исследовать точность получаемых размеров при восстановлении детали.

2. Перечень планируемых результатов выполнения курсовой работы (проекта) по дисциплине «Технология ремонта машин», соотнесенных с планируемыми результатами освоения образовательной программы

Реализация в курсовой работе (проекте) по дисциплине «Технология ремонта машин» требований ФГОС ВО, ОПОП ВО и Учебного плана по направлению 35.03.06 Агроинженерия направленность подготовки «Технический сервис в АПК» должна формировать следующие компетенции, представленные в таблице 1.

- ОПК-2 Разработка технологических карт на различные виды ремонта сельскохозяйственной техники и наземных транспортных средств
- ОПУ-2.3 Определять при разработке технологических карт перечень и последовательность операций, нормы времени на операции и квалификацию исполнителя при ремонте сельскохозяйственной техники и наземных транспортных средств с учётом государственных стандартов..
- ОПК-4 Оснащение рабочих мест по ремонту узлов и деталей сельскохозяйственной техники
- ОПК-4.1 Определять количество и виды современного эффективного специального оборудования и инструментов, необходимых для оснащения рабочих мест по ремонту деталей и узлов сельскохозяйственной техники.

3. Структура курсовой работы

Структура курсовой работы/проета определяется кафедрой самостоятельно с учётом требований к результатам подготовки специалистов данного направления; характера курсовой работы/проекта, специфики учебной дисциплины и т.д.

По объему курсовая работа должна быть не менее 30-40 страниц печатного текста.

Таблица 2 - Структура курсовой работы и объем отдельных разделов

$N_{\underline{0}}$	Элемент структуры курсовой работы/проекта	Объем (примерный)
Π/Π		страниц
1	Титульный лист (Приложение А)	1
2	Задание	1
3	Аннотация	1
4	Содержание	1-2
5	Обозначения и сокращения (при наличии)	1
6	Введение	1-2
7	Основная часть	
7.1	Теоретическая часть (теоретические и методические ос-	
	новы исследуемого вопроса)	
7.2	Практическая часть	
8	Заключение	
9	Предложения и рекомендации по теме исследования с	при необходимости
	обоснованием их целесообразности и эффективности	
10	Библиографический список	не менее 5 источников
11	Приложения (включают примеры входных и выходных	при необходимости
	данных)	
	\ \(\tau \)	/

Методические указания по выполнению курсовой работы/проекта дисциплины «Технология ремонта машин» для лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Таблица 1 – Требования к результатам выполнения курсовой работы/проекта по учебной дисциплине

No	Код	Содержание В результате изучения уч		ия учебной дисциплины обуч	нающиеся должны:	
п/п	компе- тенции	компетенции (или её части)	Индикаторы компетенций	знать	уметь	владеть
1.	ОПК-2	Способен использовать нормативные правовые акты и оформлять специальную документацию в профессиональной деятельности	ОПК-2.3 – оформляет специальные документы для осуществления профессиональной деятельности с учетом нормативных правовых актов	- нормативные правовые акты.	- использовать нормативные правовые акты и оформлять специальную документацию в профессиональной деятельности.	- навыками использования нормативных правовых актов и в оформления специальной документации в профессиональной деятельности
2	ОПК-4	Способен реализовывать современные технологии и обосновывать их применение в профессиональной деятельности	ОПК-4.1 – демонстрирует знания современных технологий в профессиональной деятельности	- современные технологии в профессиональной деятельности		- навыками реализации современных технологий и обоснования их применения в профессиональной деятельности

4. Порядок выполнения курсовой работы/проекта

4.1 Выбор темы

Обучающийся самостоятельно выбирает тему курсовой работы/проекта из предлагаемого списка тем, или может предложить свою тему при условии обоснования им её целесообразности. Тема может быть уточнена по согласованию с руководителем курсовой работы.

Тема курсового проектирования должна отвечать требованиям программы и основным положениям курса «Технология ремонта машин», увязываться по возможности с конкретными задачами и условиями ремонтных предприятий, на которых собирался материал при прохождении технологических практик. Допускается выполнение курсового проекта по тематике, предложенной ремонтно-техническими предприятиями и хозяйствами. В этом случае, вопрос о теме курсового проекта решается в индивидуальном порядке.

При выдаче задания на выполнение курсовой работы/проекта руководитель сообщает студенту тему, утвержденное техническое задание, уточняется содержание и график выполнения разделов РПЗ и листов графической части.

Задание на проектирование и график выполнения оформляются в двух экземплярах на специальном бланке, подписываются руководителем работы, утверждается заведующим кафедрой, датируется днём выдачи и регистрируется на кафедре в журнале. Факт получения задания удостоверяется подписью обучающегося в указанном журнале и на бланке задания.

Таблица 3 — Примерная тематика курсовых работ/проектов по дисциплине «Технология ремонта машин»

No	Тема курсовой работы/проекта
Π/Π	
1	Проектирование технологического процесса ремонта (восстановления) рабочего
	колеса насоса системы охлаждения двигателя
2	Организация ремонта на участке восстановления кузова.
3	Проектирование цеха для капитального ремонта тракторов.
4	Организация участка и проектирование технологического процесса восстановле-
	ния деталей и сборочных единиц в условиях районного ремонтно-технического
	предприятия
5	Разработка технологического процесса восстановления крышки подшипника
6	Разработка технологического процесса восстановления насоса высокого давления
7	Разработка технологического процесса восстановления шестеренного насоса

Выбор темы курсовой работы/проекта регистрируется в журнале регистрации курсовых работ/проектов на кафедре.

4.2 Составление плана выполнения курсовой работы

Выбрав тему, определив цель, задачи, структуру и содержание курсовой работы необходимо совместно с руководителем составить план-график выполнения курсовой работы/проекта с учетом графика учебного процесса (табл. 4).

Таблица 4 – Примерный план-график выполнения курсовой работы/проекта

№	Наименование действий	№ недели се-	
		местра	
1	Выбор темы	1	
2	Получение задания по курсовой работе	1	
3	Уточнение темы и содержания курсовой работы	2	
4	Составление библиографического списка	2	

5	Изучение научной и методической литературы	3
6	Сбор материалов, подготовка плана курсовой работы	4
7	Анализ собранного материала	4
8	Предварительное консультирование	5
9	Написание теоретической части	6-10
10	Проведение исследования, получение материалов исследования, обработка данных исследования, обобщение полученных результатов	9-10
11	Представление руководителю первого варианта курсовой работы и обсуждение представленного материала и результатов	11
12	Составление окончательного варианта курсовой работы	12-14
13	Заключительное консультирование	15
14	Рецензирование курсовой работы	16
15	Защита курсовой работы	17

4.3 Требования к разработке структурных элементов курсовой работы/проекта

4.3.1 Разработка введения

Введение должно содержать основные вопросы проектирования технологических процессов ремонта деталей машин и сельскохозяйственной техники в целом, освещать также тематику, состав, объем, структурное построение оформления работы, давать оценку современного состояния и использования материально-технической базы районных ремонтных предприятий, перспективы их развития, а также новые прогрессивные методы восстановления деталей машин сельскохозяйственного назначения.

4.3.2 Разработка основной части курсовой работы/проекта

Теоретическая часть

Включает в себя:

- анализ исходных данных;
- выбор варианта принципиального решения организации ремонтно-технического предприятия;
 - расчет основных показателей ремонтного производства;
- разработка общей компоновки производственного корпуса, построение схемы грузопотоков, выбор подъемно-транспортных средств;
 - планировка производственного участка;
- описание разрабатываемой технологии разборки узла наземного транспортнотехнологического средства;
 - разработка маршрутного технологического процесса восстановления детали;
- описание разрабатываемой технологии сборки узла наземного транспортнотехнологического средства;
 - исследование точности получения размера восстанавливаемой детали;
 - заключение.

Графическая часть

Включает в себя:

Линейный график согласования работ — 1 лист A1 Планировка ремонтного цеха (предприятия) — 1 лист A1 График грузопотоков — 0,5 листа A1

Планировка производственного участка – 0,5 листа А1

Исследование точности получения размера восстанавливаемой детали – 0,5 листа А1

Ремонтный чертеж детали – 0,5 листа А1

Маршрутная карта разборки узла – 0,5 листа А1

Маршрутная карта сборки узла -0.5 листа A1.

Общий объем графической части составляет не менее 4 листов формата А1.

4.4.3 Разработка заключения/выводов

Основное назначение заключения/выводов - резюмировать содержание курсовой работы (проекта), подвести итоги проведенных исследований, соотнеся их с целью и задачами исследования, сформулированными во введении.

5. Требования к оформлению курсовых работ/проектов

5.1 Оформление текстового материала (*ГОСТ 7.0.11 – 2011*)

- 1. Курсовая работа/проект должна быть выполнена печатным способом с использованием компьютера и принтера на одной стороне белой бумаги формата А 4 (210х297 мм).
- 2. Поля: с левой стороны 25 мм; с правой 10 мм; в верхней части 20 мм; в нижней 20 мм.
- 3. Тип шрифта: *Times New Roman Cyr*. Шрифт основного текста: обычный, размер 14 пт. Шрифт заголовков разделов (глав): полужирный, размер 16 пт. Шрифт заголовков подразделов: полужирный, размер 14 пт. Цвет шрифта должен быть черным. Межсимвольный интервал обычный. Межстрочный интервал полуторный. Абзацный отступ 1,25 см.
- 4. Страницы должны быть пронумерованы. Порядковый номер ставится в **середине верхнего поля**. Первой страницей считается титульный лист, но номер страницы на нем не проставляется. Рецензия страница 2, затем 3 и т.д.
- 5. Главы имеют **сквозную нумерацию** в пределах работы и обозначаются арабскими цифрами. **В конце заголовка точка не ставится**. Если заголовок состоит из двух предложений, их разделяют точкой. **Переносы слов в заголовках не допускаются.**
- 6. Номер подраздела (параграфа) включает номер раздела (главы) и порядковый номер подраздела (параграфа), разделенные точкой. Пример 1.1, 1.2 и т.д.
- 7. Главы работы по объему должны быть пропорциональными. Каждая глава начинается с новой страницы.
- 8. В работе необходимо чётко и логично излагать свои мысли, следует избегать повторений и отступлений от основной темы. Не следует загромождать текст длинными описательными материалами.
- 9. На последней странице курсовой работы/проекта ставятся дата окончания работы и подпись автора.
- 10. Законченную работу следует переплести в папку.

Написанную и оформленную в соответствии с требованиями курсовую работу/проект обучающийся регистрирует на кафедре. Срок рецензирования – не более 7 дней.

5.2 Оформление ссылок (ГОСТР 7.0.5)

При написании курсовой работы/проекта необходимо давать краткие внутритекстовые библиографические ссылки. Если делается ссылка на источник в целом, то необходимо после упоминания автора или авторского коллектива, а также после приведенной цитаты работы, указать в квадратных скобках номер этого источника в библиографическом списке.

Например: По мнению Ван Штраалена, существуют по крайней мере три случая, когда биоиндикация становится незаменимой [7].

Допускается внутритекстовую библиографическую ссылку заключать в круглые скобки, с указанием авторов и года издания объекта ссылки. Например, (Черников, Соколов 2018).

Если ссылку приводят на конкретный фрагмент текста документа, в ней указывают порядковый номер и страницы, на которых помещен объект ссылки. Сведения разделяют запятой, заключая в квадратные скобки. Например, [10, с. 81]. Допускается оправданное сокращение цитаты. В данном случае пропущенные слова заменяются многоточием.

5.3 Оформление иллюстраций (ГОСТ 2.105-95)

На все рисунки в тексте должны быть даны ссылки. Рисунки должны располагаться непосредственно после текста, в котором они упоминаются впервые, или на следующей странице. Рисунки нумеруются арабскими цифрами, при этом нумерация сквозная, но допускается нумеровать и в пределах раздела (главы). В последнем случае, номер рисунка состоит из номера раздела и порядкового номера иллюстрации, разделенных точкой (например: Рисунок 1.1).

Подпись к рисунку располагается под ним посередине строки. Слово «Рисунок» пишется полностью. В этом случае подпись должна выглядеть так: Рисунок 2 - Жизненные формы растений

Точка в конце названия не ставится.

При ссылках на иллюстрации следует писать «... в соответствии с рис. 2» при сквозной нумерации и «... в соответствии с рис. 1.2» при нумерации в пределах раздела.

Независимо от того, какая представлена иллюстрация - в виде схемы, графика, диаграммы - подпись всегда должна быть «Рисунок». Подписи типа «Схема 1.2», «Диагр. 1.5» не допускаются.

Схемы, графики, диаграммы (если они не внесены в приложения) должны размещаться сразу после ссылки на них в тексте курсовой работы/проекта. Допускается размещение иллюстраций через определенный промежуток текста в том случае, если размещение иллюстрации непосредственно после ссылки на нее приведет к разрыву и переносу ее на следующую страницу.

Если в тексте документа имеется иллюстрация, на которой изображены составные части изделия, то на этой иллюстрации должны быть указаны номера позиций этих составных частей в пределах данной иллюстрации, которые располагают в возрастающем порядке, за исключением повторяющихся позиций, а для электро- и радиоэлементов - позиционные обозначения, установленные в схемах данного изделия.

Исключение составляют электро- и радиоэлементы, являющиеся органами регулировки или настройки, для которых (кроме номера позиции) дополнительно указывают в подрисуночном тексте назначение каждой регулировки и настройки, позиционное обозначение и надписи на соответствующей планке или панели.

Допускается, при необходимости, номер, присвоенный составной части изделия на иллюстрации, сохранять в пределах документа.

Для схем расположения элементов конструкций и архитектурно-строительных чертежей зданий (сооружений) указывают марки элементов. При ссылке в тексте на отдельные элементы деталей (отверстия, пазы, канавки, буртики и др.) их обозначают прописными буквами русского алфавита.

5.4 Общие правила представления формул (ГОСТ 2.105-95)

Формулы должны быть оформлены в редакторе формул *Equation Editor* и вставлены в документ как объект.

Большие, длинные и громоздкие формулы, которые имеют в составе знаки суммы, произведения, дифференцирования, интегрирования, размещают на отдельных строках. Это

касается также и всех нумеруемых формул. Для экономии места несколько коротких однотипных формул, отделенных от текста, можно подать в одной строке, а не одну под одною. Небольшие и несложные формулы, которые не имеют самостоятельного значения, вписывают внутри строк текста.

Объяснение значений символов и числовых коэффициентов нужно подавать непосредственно под формулой в той последовательности, в которой они приведены в формуле. Значение каждого символа и числового коэффициента нужно подавать с новой строки. Первую строку объяснения начинают со слова «где» без двоеточия.

Уравнения и формулы нужно выделять из текста свободными строками. Выше и ниже каждой формулы нужно оставить не меньше одной свободной строки. Если уравнение не вмещается в одну строку, его следует перенести после знака равенства (=), или после знаков плюс (+), минус (-), умножение.

Нумеровать следует лишь те формулы, на которые есть ссылка в следующем тексте.

Порядковые номера помечают арабскими цифрами в круглых скобках около правого поля страницы без точек от формулы к ее номеру. Формулы должны нумероваться сквозной нумерацией арабскими цифрами, которые записывают на уровне формулы справа в круглых скобках. Допускается нумерация формул в пределах раздела. В этом случае номер формулы состоит из номера раздела и порядкового номера формулы, разделенных точкой (Например, 4.2). Номер, который не вмещается в строке с формулой, переносят ниже формулы. Номер формулы при ее перенесении вмещают на уровне последней строки. Если формула взята в рамку, то номер такой формулы записывают снаружи рамки с правой стороны напротив основной строки формулы. Номер формулы-дроби подают на уровне основной горизонтальной черточки формулы.

Номер группы формул, размещенных на отдельных строках и объединенных фигурной скобкой, помещается справа от острия парантеза, которое находится в середине группы формул и направлено в сторону номера.

Общее правило пунктуации в тексте с формулами такое: формула входит в предложение как его равноправный элемент. Поэтому в конце формул и в тексте перед ними знаки препинания ставят в соответствии с правилами пунктуации.

Двоеточие перед формулой ставят лишь в случаях, предусмотренных правилами пунктуации: а) в тексте перед формулой обобщающее слово; б) этого требует построение текста, который предшествует формуле.

Знаками препинания между формулами, которые идут одна под одной и не отделены текстом, могут быть запятая или точка с запятой непосредственно за формулой к ее номеру.

5.5 Оформление таблиц *(ГОСТ 2.105-95)*

На все таблицы в тексте должны быть ссылки. Таблица должна располагаться непосредственно после текста, в котором она упоминается впервые, или на следующей странице.

Все таблицы нумеруются (нумерация сквозная, либо в пределах раздела – в последнем случае номер таблицы состоит из номера раздела и порядкового номера внутри раздела, разделенных точкой (например: Таблица 1.2). Таблицы каждого приложения обозначают отдельной нумерацией арабскими цифрами с добавлением обозначения приложения (например: Приложение 2, табл. 2).

Название таблицы следует помещать над таблицей слева, без абзацного отступа в одну строку с ее номером через тире (*например*: Таблица 3 — Аккумуляция углерода в продукции агроценозов за 1981-2015 гг.).

При переносе таблицы на следующую страницу название помещают только над первой частью. Над другими частями также слева пишут слово «Продолжение» или «Окончание» и указывают номер таблицы (например: Продолжение таблицы 3).

Таблицы, занимающие страницу и более, обычно помещают в приложение. Таблицу с большим количеством столбцов допускается размещать в альбомной ориентации. В таблице допускается применять размер шрифта 12, интервал 1,0.

Заголовки столбцов и строк таблицы следует писать с прописной буквы в единственном числе, а подзаголовки столбцов — со строчной буквы, если они составляют одно предложение с заголовком, или с прописной буквы, если они имеют самостоятельное значение. В конце заголовков и подзаголовков столбцов и строк точки не ставят.

Разделять заголовки и подзаголовки боковых столбцов диагональными линиями не допускается. Заголовки столбцов, как правило, записывают параллельно строкам таблицы, но при необходимости допускается их перпендикулярное расположение.

Горизонтальные и вертикальные линии, разграничивающие строки таблицы, допускается не проводить, если их отсутствие не затрудняет пользование таблицей. Но заголовок столбцов и строк таблицы должны быть отделены линией от остальной части таблицы.

При заимствовании таблиц из какого-либо источника, после нее оформляется сноска на источник в соответствии с требованиями к оформлению сносок.

5.6 Электронные ресурсы

- 1. Суров, В.В. Продуктивность звена полевого севооборота / В.В. Суров, О.В. Чухина // Молочнохозяйственный вестник. 2012. №4(8) [Электронный журнал]. С.18-23. Режим доступа: URL molochnoe.ru/journal.
- 2. Защита персональных данных пользователей и сотрудников библиотеки [Электронный ресурс]. Режим доступа: http://www.nbrkomi.ru. Заглавие с экрана. (Дата обращения: 14.04.2014).

5.7 Оформление графических материалов

Графическая часть выполняется на одной стороне белой чертёжной бумаги в соответствии с требованиями ГОСТ 2.301-68 формата A1 (594х841). В обоснованных случаях для отдельных листов допускается применение других форматов.

Требования к оформлению графической части изложены в стандартах ЕСКД: ГОСТ 2.302-68* «Масштабы»; ГОСТ 2.303-68* «Линии»; ГОСТ 2.304-81* «Шрифты», ГОСТ 2.305-68** «Изображения — виды, разрезы, сечения» и т. д. Основная надпись на чертежах выполняется по ГОСТ 2.104-68*. Оформления основной надписи графической части выполняется в соответствии с ГОСТ Р 21.1101-2013 СПДС.

Чертежи должны быть оформлены в полном соответствии с государственными стандартами: «Единой системы конструкторской документации» (ЕСКД); «Системы проектной документации для строительства» (СПДС (ГОСТ 21)) и других нормативных документов. На каждом листе тонкими линиями отмечается внешняя рамка по размеру формата листа, причем вдоль короткой стороны слева оставляется поле шириной 25 мм для подшивки листа. В правом нижнем углу располагается основная подпись установленной формы, приложение Г.

5.8 Оформление приложений (ГОСТ 2.105-95)

Каждое приложение следует начинать с новой страницы с указанием наверху посередине страницы слова "Приложение" и его обозначения. Приложение должно иметь заголовок, который записывают симметрично относительно текста с прописной буквы отдельной строкой.

Приложения обозначают заглавными буквами русского алфавита, начиная с A, за исключением букв Ë, 3, Й, О, Ч, Ь, Ы, Ъ. Допускается использование для обозначения приложений арабских цифр. После слова "Приложение" следует буква (или цифра), обозначающая его последовательность.

Приложения, как правило, оформляют на листах формата А4. Допускается оформлять приложения на листах формата А3, А2, А1 по ГОСТ 2.301.

Приложения должны иметь общую с остальной частью документа сквозную нумерацию страниц.

5.9 Требования к лингвистическому оформлению курсовой работы/проекта

Курсовая работа/проект должна быть написана логически последовательно, литературным языком. Повторное употребление одного и того же слова, если это возможно, допустимо через 50-100 слов. Не должны употребляться как излишне пространные и сложно построенные предложения, так и чрезмерно краткие лаконичные фразы, слабо между собой связанные, допускающие двойные толкования и т. д.

При написании курсовой работы/проекта не рекомендуется вести изложение от первого лица единственного числа: «я наблюдал», «я считаю», «по моему мнению» и т.д. Корректнее использовать местоимение «мы». Допускаются обороты с сохранением первого лица множественного числа, в которых исключается местоимение «мы», то есть фразы строятся с употреблением слов «наблюдаем», «устанавливаем», «имеем». Можно использовать выражения «на наш взгляд», «по нашему мнению», однако предпочтительнее выражать ту же мысль в безличной форме.

Письменная речь требует использования в тексте большого числа развернутых предложений, включающих придаточные предложения, причастные и деепричастные обороты.

Необходимо определить основные понятия по теме исследования, чтобы использование их в тексте курсовой работы/проекта было однозначным. Это означает: то или иное понятие, которое разными учеными может трактоваться по-разному, должно во всем тексте данной работы от начала до конца иметь лишь одно, четко определенное автором курсовой работы/проекта значение.

В курсовой работе должно быть соблюдено единство стиля изложения, обеспечена орфографическая, синтаксическая и стилистическая грамотность в соответствии с нормами современного русского языка.

5.10. Порядок защиты курсовой работы/проекта

Порядок защиты курсовой работы/проекта разрабатывается кафедрой самостоятельно. Ответственность за организацию и проведение защиты курсовой работы возлагается на заведующего кафедрой и руководителя выполнения курсовой работы/проекта. Заведующий кафедрой формирует состав комиссии по защите курсовых работ/проектов, утвержденный протоколом заседания кафедры. Руководитель информирует обучающихся о дне и месте проведения защиты курсовых работ/проектов, обеспечивает работу комиссии необходимым оборудованием, проверяет соответствие тем представленных курсовых работ/проектов примерной тематике.

К защите могут быть представлены только работы, которые получили положительную рецензию. Не зачтённая работа должна быть доработана в соответствии с замечаниями руководителя в установленные сроки и сдана на проверку повторно.

Защита курсовых работ/проектов проводится до начала экзаменационной сессии.

В соответствии с установленными правилами курсовая работа оценивается по следующей шкале:

Оценка	Критерии					
	Доклад длится 5-7 мин. В ходе защиты автор уверенно и аргумен-					
Отлично	тировано отвечает на задаваемые комиссией вопросы, показывает					
Отлично	глубину и полную проработку рассматриваемой предметной облас-					
	ти.					
	Длительность доклада близка к установленному регламенту. В ходе					
	защиты студент достаточно полно и обоснованно отвечает на во-					
Vanaura	просы и замечания членов комиссию Процесс защиты демонстри-					
Хорошо	рует достаточно проработку тематики курсового проекта. Вместе с					
	тем, в ходе доклада и дискуссии в речи и ответах на вопросы имеет-					
	ся ряд недостатков, не имеющих принципиального характера, но					

	свидетельствующих о недоскональной проработке материала.					
Удовлетворительно	Длительность доклада отличается от установленного регламента. В ходе защиты студент демонстрирует слабые знания предметной области. Речь содержит значительные фактические ошибки. Ответы на вопросы членов комиссии свидетельствуют о пробелах в понимании как междисциплинарных связей, так и показывают фрагментарный характер знаний студента по дисциплине.					
Не удовлетвори- тельно	Длительность доклада значительно отличается от установленного регламента. В процессе защиты неуверенно и логически непоследовательно излагается материал, отсутствует план доклада, студент не понимает сущности задаваемых вопросов, в ответах присутствуют грубые ошибки или студент затрудняется с ответом.					

По итогам защиты за курсовую работу/проект выставляется оценка на титульный лист работы, в экзаменационную ведомость и зачетную книжку обучающегося.

6. Пример выполнения курсовой работы/проекта

Темой курсовой работы/проекта является «Организация участка и проектирование технологического процесса восстановления деталей и сборочных единиц (указывается конкретная номенклатура) в условиях районного ремонтно-технического предприятия».

Исходные данные для курсового проектирования основываются на материалах, собранных студентом при прохождении технологических практик, или задаются руководителем курсового проектирования (см. приложение 1 и 2). В качестве исходных данных можно использовать:

- план ремонтно-технического предприятия с указанием площадей, размещением оборудования, подъездных путей;
- план производственного участка с указанием площади, размещения и привязки оборудования, указанием рабочих мест;
 - годовая программа ремонтного предприятия;
- нормативно-техническая документация по технологическим процессам восстановления деталей или сборочных единиц;
- экономические показатели процесса восстановления (стоимость новой детали или сборочной единицы, себестоимость восстановления, накладные расходы и др.);
- статистический материал по надежности восстановленных деталей, по качеству ремонта и др.

В индивидуальном порядке перечень исходных данных может быть пересмотрен и при необходимости – изменен или дополнен.

РАСЧЕТНО-ОРГАНИЗАЦИОННАЯ ЧАСТЬ

РАСЧЕТ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ РЕМОНТНОГО ПРОИЗВОДСТВА

Основными параметрами, определяющими организацию производственного процесса ремонтного предприятия, являются: такт ремонта, продолжительность пребывания машины (объекта) в ремонте (производственный цикл) и фронт ремонта.

Такт ремонта — промежуток времени, по истечении которого на ремонтное предприятие должен поступить или выйти из ремонта очередной объект (машина, агрегат).

Для специализированного ремонтного предприятия, имеющего постоянную и равномерную загрузку одноименными объектами ремонта, такт ремонта τ (час/шт.) определяется по формуле

$$\tau = \frac{\Phi_{e.np}}{N}, (6.1)$$

где $\Phi_{s.np}$ - номинальный годовой фонд времени специализированного ремонтного предприятия (час.); N - годовая программа ремонта объектов (машин, агрегатов) (шт.).

Номинальный годовой фонд времени для производств с нормальными условиями труда $\Phi_{a,np} = 2020$ час.

Продолжительность пребывания объекта в ремонте (производственный цикл) - период времени от начала первой операции до конца последней операции ремонта данного объекта.

Операции на ремонте машин можно разделить на две основные группы.

Первая группа - зависимые операции: начало последующей операции может последовать только после окончания предыдущей (разборка машины и мойка узлов, мойка деталей и дефектация).

Вторая группа - полностью независимые операции (ремонт топливной аппаратуры, ремонт шатунно-поршневой группы, ремонт клапанного механизма, восстановление изношенных деталей и др.).

Длительность пребывания машины в ремонте будет равна сумме длительности всех зависимых операций.

При ремонте тракторов и автомобилей такими основными зависимыми операциями, определяющими продолжительность производственного цикла, являются:

- наружная мойка,
- разборка машины и узлов,
- мойка и дефектация деталей,
- ремонт рамы и кузова, сборка узлов,
- общая сборка машины,
- обкатка с устранением обнаруженных дефектов,
- окраска.

Для определения продолжительности пребывания объекта в ремонте необходимо построить график производственного цикла. Пример графика производственного цикла при ремонте трактора Т-150К приведен на рис. 6.1. В столбце «Операция» содержится последовательный перечень зависимых технологических операций, составляющих технологический процесс ремонта объекта. В соседних столбцах указаны нормы времени, количество человек на рабочих постах, длительность выполнения соответствующих операций, процент загрузки рабочих постов. По оси абсцисс в определенном масштабе отложены часы работы и указаны промежутки времени, равные тактам.

Продолжительность выполнения операций отмечена на графике прямой линией, по-казывающей начало и конец работы поста, на котором выполняется соответствующая операция.

При разработке последовательности технологических операций и комплектовании рабочих постов необходимо руководствоваться следующими положениями:

- 1. Работы, выполняемые на рабочем посту, должны быть технологически однородны по приемам, инструменту и оборудованию, применяемым для их выполнения.
- 2. Количество исполнителей на тот или иной пост следует подбирать с учетом удобства проведения работ. Следует стремиться к минимальному количеству исполнителей на посту.
- 3. Продолжительность выполнения каждой зависимой технологической операции должны как можно ближе соответствовать расчетному такту (недогрузка не более 5%, перегрузка не более 15%). При этом должно выполняться условие:

$$\frac{T_i}{m} = (0.95...1,15)\tau,(6.2)$$

места	Содержание ра-	H	емкос	/до- еть ра- от	Число	рабочих	бчего в %	полни- 1 место	.б. мест	китель- 16от, ч
№ раб. места	боты, операции	о Разряд работ	в % к общей	В чел/ч	расчетное	принятое	Загрузка рабчего	Число исполни- телей на 1 место	Число раб. мест	Продолжитель- ность работ, ч
1	Наружная очистка, мойка	2	1,5	4,85	1,00	1	100	1	1	4,85
2	Снятие кабины, сидений, двигателя, сцепления, колес	2	2	6,46	1,34	2	67	2	1	4,82
3	Снятие передней оси и полуоси в сборе, рулевого управления, ВОМ, дифференциала	2	2	6,46	1,34	1	134	1	1	4,82
4	Очистка сбороч- ных единиц	2	1,5	4,85	1,00	1	100	1	1	4,85
5	Разборка заднего моста и ГУ	3	2	6,46	1,34	1	134	1	1	4,82
6	Разборка сб. еди- ниц и КПП	3	2,5	8,08	1,67	2	84	2	1	4,84
7	Очистка деталей	2	1,5	4,85	1,00	1	100	1	1	4,85
8	Дефектация дета- лей	5	1,5	4,85	1,00	1	100	1	1	4,85
9	Ремонт и сборка топл. бака	4	3,0	9,70	2,00	2	100	2	1	4,85
10	Ремонт и сборка КПП	4	7,5	24,23	5,02	5	100	2+3	2	4,85
11	Ремонт и сборка колес	4	4,5	14,54	3,01	3	100	3	1	4,85
12	Ремонт и сборка передней оси, полурамы, поворотн. рычагов	4	6,0	19,40	4,02	4	100	2+2	2	4,85
13	Ремонт и сборка сцепления, тормо- зов	4	6,0	19,40	4,02	4	100	2+2	2	4,85
14	Ремонт и сборка дифференциала, ВОМ, ГУ	4	6,0	19,40	4,02	4	100	2+2	2	4,85
15	Ремонт кабины, облицовки, рамы	3	4,5	14,54	3,01	3	100	3	1	4,85
16	Установка двигателя, механизма управления, привода ВОМ, прицепного устр-ва, гидрораспр-ля	3	10,5	33,92	7,02	7	100	3+4	2	4,85
17	Установка рул. упр-я, ГУ, топл. бака, кабины, колес	3	9,0	29,07	6,01	6	100	3+3	2	4,85

18	Обкатка и испытание трактора	4	1,5	4,85	1,00	1	100	1	1	4,85
19	Окраска трактора	3	1,5	4,85	1,00	1	100	1	1	4,85
20	Столярно-обойные работы	3	1,5	4,85	1,00	1	100	1	1	4,85
21	Станочные работы	3	13,5	43,61	9,03	9	100	1	9	4,85
22	Сварочные работы	3	6,0	19,40	4,02	4	100	2+2	2	4,85
23	Кузнечно- термические рабо- ты	3	3,0	9,70	2,00	2	100	2	1	4,85
24	Гальванические работы	4	1,5	4,85	1,00	1	100	1	1	4,85
	Итого:	-	100	323	-	67	-	-	39	-

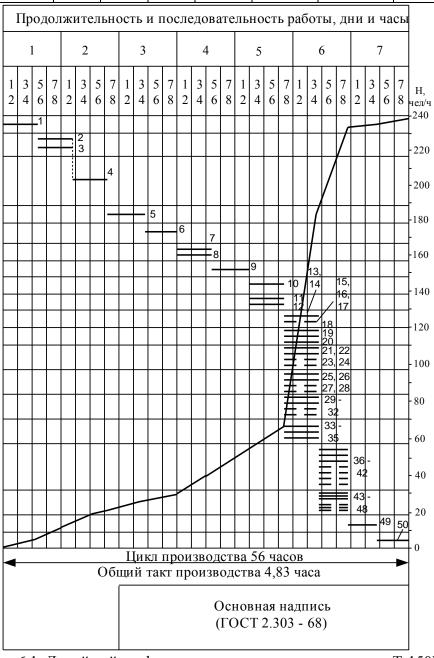


Рис. 6.1. Линейный график согласования ремонта трактора Т-150К

где T_i - трудоемкость i - ой технологической операции; m - количество рабочих, занятых выполнением i - ой технологической операции.

Выполнение равенства (6.2) следует добиваться изменением содержания технологических операций (так как содержание операций определяет трудоемкость их выполнения T_i), изменением количества рабочих постов n и рабочих мест m.

Трудоемкости технологических операций T_i можно определить по выражению:

 $T_i = \xi_i T_{\Sigma}$, (6.3)

где T_{Σ} - общая трудоемкость ремонта объекта.

 ξ_i - доля трудоемкости i - ой технологической операции в общей трудоемкости ремонта объекта (табл. 6.1).

Таблица 6.1 Ориентировочное распределение трудоемкостей работ

	Ориентировочное распределение трудоемкостей работ						
No	Наименование	% от общей трудо	емкости КР машины				
31-	работы	Гусеничный трактор	Колесный трактор				
1	2	3	4				
1	Наружная очистка и мойка	0,450,50	0,400,45				
2	Разборка на сборочные еди- ницы и детали	8,28,6	8,08,2				
3	Мойка и очистка сборочных единиц и деталей	1,21,4	1,01,2				
4	Дефектация и сортировка де- талей	2,0	1,9				
5	Комплектование и подсборка	4,34,5	4,24,3				
6	Ремонт рамы	6,57,3	6,37,0				
7	Ремонт и сборка основного двигателя	11,612,2	11,812,8				
8	Ремонт электрооборудования	1,31,6	1,51,8				
9	Ремонт топливной дизельной аппаратуры	2,32,9	3,33,5				
10	Ремонт карбюраторной топ- ливной аппаратуры	0,4	0,6				
11	Обкатка и испытание двига- телей	1,21,4	1,21,4				
12	Общая сборка трактора	17,619,2	18,019,5				
13	Медницко-радиаторные	3,84,0	3,84,0				
14	Жестяницкие	4,24,6	4,24,6				
15	Деревоотделочные и обойные	1,21,4	1,21,4				
16	Покрасочные	1,21,4	1,31,5				
17	Слесарные	4,6	4,3				
18	Станочные	14,5	14,5				
19	Кузнечно-термические	3,03,2	2,83,0				
	Сварочно-наплавочные:						
20	- электросварочные	2,93,1	2,72,9				
	- газосварочные	0,81,0	0,71,0				
21	Шиноремонтные	-	0,81,0				
	Итого	100	100				

Общая трудоемкость ремонта объекта зависит от заданной программы ремонта и определяется по формуле:

$$T_{\Sigma} = K_{np} T_{\Sigma,0}$$
, (6.4)

где $T_{\Sigma,0}$ - общая трудоемкость ремонта объекта при годовой программе менее 100 шт. (табл. 6.2); K_{np} - коэффициент, учитывающий годовую производственную программу (рис. 6.2).

Таблица 6.2 Трудоемкость ремонта при годовой программе менее 100 шт.

Наименование и марка машины	Удельная трудоемкость, челч
K-700, K-701	527
T-150, T-150K	499
MT3-80, MT3-82, MT3-50, MT3-52, T-40A	292
Т-74, ДТ-75М, ДТ-75	366

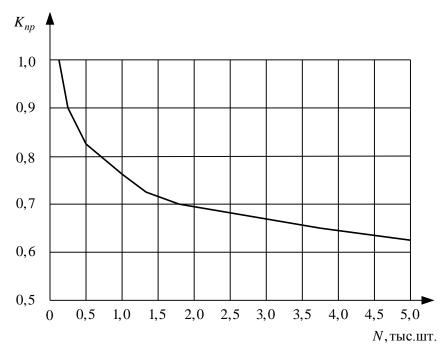


Рис. 6.2. Изменение трудоемкости ремонта машин в зависимости от годовой программы ремонта

После нанесения на график работы всех постов определяется длительность производственного цикла t_{ij} . Для этого по графику определяется количество часов (дней) от начала первой операции до конца последней.

С использованием найденного t_u определяют фронт ремонта f .

Фронт ремонта – это количество объектов (машин, агрегатов), одновременно находящихся в ремонтном предприятии. Фронт ремонта определяется следующей зависимостью:

$$f = \frac{t_u}{\tau}$$
,(6.5).

Если при этом окажется, что фронт ремонта выражается не целым числом, его значение следует округлять в большую сторону до ближайшего целого числа.

Сокращая длительность производственного цикла t_{ij} можно уменьшить фронт ремонта машин и, следовательно, потребную производственную площадь цеха.

РАСЧЕТ ПЛОЩАДЕЙ ПРОИЗВОДСТВЕННЫХ УЧАСТКОВ

При укрупненных расчетах площади производственных участков основного и вспомогательного производств определяются по формуле

$$S_{yq} = s_p n_p$$
, (6.8)

где s_p - удельная площадь на одного производственного рабочего, м 2 /чел.; n_p - количество рабочих в смене, чел.

Распределение площадей на рабочих по участкам приведено в табл. 6.3.

Таблица 6.3

Распределение площадей на рабочих по участкам

Производственные участки	Удельная площадь на 1 производст- венного рабочего, м ²
Наружной мойки и приемки	30 35
Разборки (при ремонте полнокомплектных машин)	20 30
Мойки	25
Дефектации деталей и входного контроля	1517
Комплектования деталей	15 18
Восстановления базовых и основных деталей силовых	1114
агрегатов	
Сборки силовых агрегатов	1315
Ремонта приборов питания	12 14
Ремонта электрооборудования	10 12
Ремонта приборов пневмо- и гидросистем	12 14
Ремонта рам	20
Сборки	25 30
Регулировки и испытания	30 35
Шиномонтажный	20
Аккумуляторный	10 12
Обойный	10
Окрасочный	40 50
Деревообрабатывающий	20 25
Ремонта и сборки платформ	2025
Кабино-жестяницкий	12 15
Ремонта кузовов	25 30
Жестяницко-заготовительный	10 12
Сборки кузовов	25 30
Слесарно-механический	10 12
Сварочно-наплавочный	15 20
Гальванический	30 45
Кузнечный	2426
Медницко-радиаторный	12 15
Термический	24 26
Инструментальное хозяйство	10 12
Ремонтно-механический участок ОГМ	10 12

Суммированием площадей производственных участков определяют общую производственную площадь. Площади складских помещений принимаются равными 25 % производственных площадей и распределяются между складами (табл. 6.4).

Таблица 6.4

Определение площадей складских помещений

Склад	Доля площадей, %
Запасных частей	20
Деталей, ожидающих ремонта	7
Комплектовочного	10
Утиля	2
Металлов	8
Центрального инструментального	4
(ЦИС)	
Агрегатов, ожидающих ремонта	15
Отремонтированных агрегатов	6

В расчетную площадь производственного корпуса включаются площади только тех складов, которые размещаются в производственном корпусе.

Вспомогательные (административно-бытовые) помещения могут быть встроенными в объем производственного корпуса (рекомендуется при числе работающих на предприятии до 200 чел.), пристроенными к одному из его торцов (от 200 до 500 чел.), расположены в отдельно стоящем здании (более 500 чел.).

При размещении вспомогательных помещений в объеме производственного корпуса площадь бытовых помещений принимают равной 12%, а административных -5% от расчетной производственной площади (площади участков основного и вспомогательного производств).

Суммарную площадь производственных, складских и вспомогательных помещений, размещаемых в производственном корпусе, увеличивают на 10...15~% с учетом площади, отводимой под магистральные проезды. В результате получают расчетную площадь производственного корпуса S_{κ} .

РАСЧЕТ КОЛИЧЕСТВА ОБОРУДОВАНИЯ

РАСЧЕТ ОБОРУДОВАНИЯ МОЕЧНОГО ОТДЕЛЕНИЯ

Количество моечных машин для наружной мойки машин в сборе $N_{{\scriptscriptstyle M},{\scriptscriptstyle M}}$ находят по формуле

$$N_{_{M,M}} = \frac{1}{\tau q_{_{M,M}} k_{_{M}}}$$
,(6.9)

где $q_{_{M,M}}$ - производительность моечной машины, ед/час (в зависимости от конструкции моечной машины имеет значения от 500 до 2000 кг/ч); $k_{_M}$ - коэффициент использования моечной машины ($k_{_M}=0.8...0.9$).

Полученное значение $N_{_{M,M}}$ следует округлить до целого числа в большую сторону.

Количество моечных машин для мойки сборочных единиц и деталей $N_{{\scriptscriptstyle M},\partial}$ находят по формуле

$$N_{\scriptscriptstyle M,\partial} = \frac{\beta Q_{\scriptscriptstyle M}}{q_{\scriptscriptstyle M,\partial} \tau k_{\scriptscriptstyle M}}, (6.10)$$

где $Q_{\scriptscriptstyle M}$ - масса объекта ремонта, кг; β - коэффициент, учитывающий долю массы сборочных единиц и деталей, подлежащих мойке (для тракторов и грузовых автомобилей β = 0,45...0,55); $q_{\scriptscriptstyle M,\partial}$ - производительность моечной машины, кг/ч (в зависимости от конструкции моечной машины имеет значения от 500 до 2000 кг/ч); $k_{\scriptscriptstyle M}$ - коэффициент использования моечной машины ($k_{\scriptscriptstyle M}$ = 0,8...0,9).

Полученное значение $N_{m,d}$ следует округлить до целого числа в большую сторону.

РАСЧЕТ МЕТАЛЛОРЕЖУЩЕГО ОБОРУДОВАНИЯ

Расчет общего количества металлорежущих станков N_{cm} выполняется по зависимости

$$N_{cm} = \frac{T_{cm}N}{\Phi_{e,np}k_{cm}}$$
,(6.11)

где T_{cm} - трудоемкость станочных работ на один объект ремонта (ед/час); k_{cm} - коэффициент загрузки станка по времени ($k_{cm}=0.85...0.95$)

Полученное общее количество станков распределяют по типам примерно в следующем процентном соотношении: токарные – 45...50%, фрезерные – 8....10%, расточные – 6...8%, зуборезные – 3...4%, строгальные и долбежные – 8....10%, шлифовальные – 12...16%, сверлильные – 10...15%, прочие – 3%. Округлять число станков до целых необходимо так, чтобы сумма всех станков не выходила за пределы значения, полученного после расчета по формуле (6.11). Марки станков подбирают с учетом технологических процессов и размеров обрабатываемых деталей. При этом, как правило, выбирают универсальное оборудование.

РАСЧЕТ СВАРОЧНО-НАПЛАВОЧНОГО ОБОРУДОВАНИЯ

Сварочно-наплавочные работы выполняются как методами ручной дуговой и газовой сварки, так и посредством механизированных процессов наплавки. Кроме этого, на сварочно-наплавочном участке может располагаться оборудование для газотермического напыления покрытий. Примерное распределение общего объема сварочно-наплавочных работ по видам при ремонте тракторов и автомобилей приведено в табл. 6.5.

Количество сварочно-наплавочного оборудования каждого вида $N_{n,j}$ находится из выражения

$$N_{H,j} = \frac{T_{H,j}N}{\Phi_{e.np}k_{H,j}}, (6.12)$$

где $T_{\mu,j}$ - трудоемкость сварочно-наплавочных работ на один объект ремонта (ед/час); $k_{\mu,j}$ - коэффициент загрузки сварочно-наплавочного оборудования по времени ($k_{\mu,j}=0.85...0.95$).

Таблица 6.5 Распределение общего объема сварочно-наплавочных работ по видам

Ручная сварка и на- Наимено- плавка, %		Механизированная сварка и наплавка, %				
вание объ-	Электроду- говая	Газовая	Под флю- сом	В защит-ных газах	Вибродуго- вая	Про-чие
Шасси гу- сеничных тракторов	1216	812	2226	3034	1317	46
Шасси ко- лесных тракторов	1114	114	-	3943	2230	610
Грузовые автомоби- ли ГАЗ и ЗИЛ	1418	812	1014	3640	2024	13

Общее количество сварочно-наплавочного оборудования N_{H} составит

$$N_{H} = \sum_{j=1}^{r} N_{H,j}$$
, (6.13)

где r - количество применяемых при ремонте объектов способов сварки и наплавки.

Более подробный выбор оборудования, располагаемого на сварочно-наплавочном участке, следует делать после разработки технологии восстановления приведенной в задании на курсовой проект детали.

РАСЧЕТ КУЗНЕЧНО-ПРЕССОВОГО ОБОРУДОВАНИЯ

В кузнечных отделениях рассчитывают необходимое количество печей для нагрева заготовок, а также количество прессов и молотов.

Примерное распределение общего объема кузнечных работ по видам при ремонте тракторов T-100M и T-130 приведено в табл. 6.6.

Тогда годовой объем кузнечных работ по массе Q_{κ} определяют по формуле:

$$Q_{\kappa} = \left(m_{\kappa,p} + m_{\kappa,H}\right) K_{\kappa} N , (6.14)$$

где $m_{\kappa,p}, m_{\kappa,n}$ - массы ремонтируемых и изготавливаемых деталей соответственно; K_{κ} - коэффициент приведения, характеризующий объем кузнечных работ при ремонте тракторов других моделей.

Таблица 6.6 Распределение общего объема кузнечных работ по видам

Наиме-	Ремо	Из	вготовлени	е деталеі	й		
нование ре-	Масса деталей	В том ч	исле, %	Масса В том числ		м числе	, %
мон-тируе-	на объект, кг	Ковка	Ковка	деталей на	Ковка	Ковка	Ковка
мых объектов		вруч-	под мо-	объект, кг	вруч-ную	под	под прес-
		ную	ло-тами			моло-	сом
						тами	
Трактор Т- 100М, Т-130	155	75 - 95	5 - 25	45	0 - 20	65 - 85	5 - 10
Шасси трак- тора Т-100 М	138 - 147	70 - 85	15 - 30	42 - 43	0 - 20	65 - 95	5 - 8

Коэффициент K_{κ} может быть рассчитан по формуле:

$$K_{\kappa} = \mu \sqrt[3]{\left(\frac{M_p}{M_0}\right)^2}$$
,(6.15)

где M_p - масса ремонтируемого объекта, кг (см. табл. 6.8); M_0 - масса эталонного объекта (например, трактора Т-100М); μ - поправочный коэффициент, принимается в пределах 0,95…1,05 (меньшее значение при $M_p > M_0$).

Число нагревательных кузнечных печей:

$$N_n = \frac{Q_n N}{\Phi_{e.np} q_n}, (6.16)$$

где Q_n - масса деталей на объект, подлежащих нагреву в печи в течение года, кг; q_n - часовая производительность печи, кг/ч.

Производительность камерных нагревательных печей зависит от площади пода печи: средняя удельная производительность печей составляет 200...250 кг/ч с 1 м 2 площади пода. Размеры пода согласовывают с размерами масс падающих частей молотов и размерами масс поковок (см. табл. 6.7).

Число молотов

$$N_{\scriptscriptstyle M} = \frac{Q_{\scriptscriptstyle M}N}{\Phi_{\scriptscriptstyle 6.00}q_{\scriptscriptstyle M}}, (6.17)$$

где $Q_{\scriptscriptstyle M}$ - масса деталей на объект, подлежащих ковке под молотами в течение года, кг; $q_{\scriptscriptstyle M}$ - часовая производительность молота, кг/ч.

Таблица 6.7 Основные параметры молотов и камерных нагревательных печей

Масса па-	Максимальная	масса поковки,		
дающих]	ΚΓ	Производитель-	Средняя площадь
частей мо-	фасонной	гладкого вала	ность молота, кг/ч	пода печи, M^2
лота, кг	фассинон пладкого ваз			
100	2	10	14	0,27
150	4	15	19	0,34
200	6	25	25	0,34
300	10	45	42	0,47
400	18	60	68	0,47
500	25	100	98	0,74

РАСЧЕТ ИСПЫТАТЕЛЬНЫХ СТЕНДОВ

В процессе ремонта каждый объект подвергают обкатке и испытанию по установленному техническими условиями режиму. В курсовом проекте предусмотрен расчет числа стендов для обкатки коробки перемены передач, ведущих мостов и трансмиссий в сборе.

Необходимое число стендов определяется по формуле:

$$N_{o\delta\kappa} = \frac{\alpha_n \left(t_1 + t_2\right)}{\tau k_{o\delta\kappa}}, (6.18)$$

где α_n = 1,05...1,15 — коэффициент повторности обкатки; t_1 - продолжительность обкатки одного объекта (принимается по справочной литературе); t_2 - время установки, снятия объекта с учетом переналадки стенда (для сборочных единиц тракторов принимается равным 0,5...0,6 ч); $k_{oб\kappa}$ = 0,9...0,95 — коэффициент использования стенда по времени.

РАЗРАБОТКА ОБЩЕЙ КОМПОНОВКИ ПРОИЗВОДСТВЕННОГО КОРПУСА

ВЫБОР СХЕМЫ ПОТОКА

Разработка общей компоновки начинается с выбора основной линии производственного процесса — линии разборочно-сборочных работ. В зависимости от пути перемещения основной базовой детали (рамы) применяются следующие схемы компоновки производственных участков: с прямым (рис. 2.3, а), с Г-образным (рис. 2.3, б) и с П-образным потоком (рис. 2.3, в).

Прямоточная схема отличается простотой. Она наиболее приемлема для мастерских общего назначения. При прямом потоке разборочно-сборочные участки расположены в средней части производственного корпуса и рама машины во время сборки, разборки, мойки и дефектации перемещается прямолинейно. Участки по восстановлению кузовов и других агрегатов располагаются с одной стороны потока, а участки по восстановлению деталей – с другой. К недостаткам данной схемы относят: несоответствие между собой суммарных площадей основных производственных и других подразделений при полнокомплектном ремонте, что влечет за собой необходимость переноса отдельных участков из одних групп в другие; сложность изоляции разборочно-сборочных работ от других участков.

Г-образная и П-образная схемы позволяют изолировать разборочно-моечные участки от других участков, которые можно рационально разместить вдоль основного потока, сокра-

тив пути перемещения грузов. При Г-образной схеме сборочная линия располагается перпендикулярно к разборочной, а участки по ремонту сборочных единиц и агрегатов — параллельно разборочному участку.

При П-образной схеме участки по ремонту агрегатов, кузовов, кабин охватываются моечными, разборочными и сборочными участками. Такую схему целесообразно использовать при большой годовой программе ремонта.

Габариты производственного корпуса выбирают, исходя из общей площади предприятия, унифицированных габаритных схем зданий и длины поточной линии.

Ширина корпуса принимается стандартной из ряда: 12, 18, 24, 36, 48, 54, 72 м. Длина прямоугольного здания определяется по формуле:

$$L_{\kappa} = \frac{S_{\kappa}}{B_{\kappa}}, (6.19)$$

где L_{κ} - длина производственного корпуса, S_{κ} - расчетная площадь корпуса, B_{κ} - принятая ширина производственного корпуса.

Если $\frac{L_{\kappa}}{B_{\kappa}} > 3$, то ширину здания следует увеличить и снова определить его длину. По-

лученная длина здания принимается кратной 6 м при использовании наружных колонн и кратной 6 или 12 м — при использовании внутренних колонн. Длина здания увязывается с длиной линии разборочно-сборочных работ:

$$L_p = (L_{mp} + L_{M})kM_{p,M,R}$$
, (6.20)

где L_{mp} - габаритная длина ремонтируемого трактора (табл. 6.8); $L_{\scriptscriptstyle M}$ - расстояние между тракторами (принимается $1\dots 1,5$ м); k — коэффициент, учитывающий увеличение длины линии за счет габаритных размеров установок наружной мойки, окраски и сушки (принимается $1,2\dots 1,25$); $M_{\scriptscriptstyle D,M,n}$ - число рабочих мест на линии разборочно-сборочных работ.

В случае если $L_{\kappa} > L_p$, то можно использовать схему с прямым потоком. В противном случае — Γ -образную или Π -образную схему. Для Γ -образной и Π -образной схемы необходимо изменить ранее выбранные габариты здания с таким расчетом, чтобы приблизить форму здания к квадрату.

При выборе габаритов пролетов производственного корпуса можно руководствоваться рекомендациями табл. 6.9.

Таблица 6.8 Габаритные размеры и масса некоторых марок тракторов

	1	1 1	1 1
Марка трак-	Масса трак-	Габаритные	Занимаемая
тора	тора, кг	размеры, мм	площадь, M^2
K-700, K- 701 T-100М T-150 T-150К ДТ-75, T-74	12000 11400 7030 7750 5500 3650	7400×2825 - 4750×1850 5985×2220 4200×1865 3980×1970	20,9 - 8,8 13,3 7,8 7,8
MT3-100			

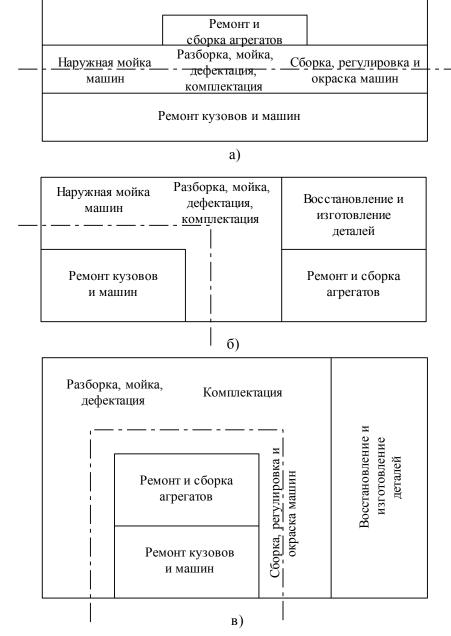


Рис. 6.3. Схемы компоновки участков при прямом (а), Γ -образном (б) и Π -образном (в) потоках

Таблица 6.9 Габаритная схема пролетов производственных корпусов ремонтных предприятий

Ширина	Высота про-	Шаг	колонн, м	Примерное назначение ре-
пролета, м	лета, м	Наруж-ных	Внут-ренних	монтного предприятия
	Для пр	оедприятий с П	ТМ грузоподъемно	стью 0,55,0 т
18 - 24	8,4; 9,6; 10,8	6	12	Ремонт тракторов кл. 3,0 и более, зерноуборочных комбайнов. Станции ТО МТП. Ремонт автомобилей МАЗ, КрАЗ, КаМАЗ
18	7,2 8,4 9,6 10,8	6	12	Ремонт тракторов кл. 1,4, автомобилей, спец. комбайнов, экскаваторов некоторых типов, СТО автомобилей ГАЗ и ЗИЛ

18	6,0 7,2 8,4 9,6	6	12	Ремонт автотракторных двигателей и др. агрегатов, оборудования МЖФ и станков. Технические обменные пункты
12	4,8 6,0 7,2 8,4	6	12	Цеха по ремонту топливной аппаратуры, гидрооборуд-я, э/оборуд-я, восстановлению деталей. Пристройки различного назначения
6 - 9	3,6; 4,2; 4,8; 6,0	6	6	Гаражи, пристройки к много- этажным зданиям
	Для предпри	ятий с мостовы	ми кранами грузог	одъемностью 550 т
18	8,4 9,6 10,8	6	12	Ремонт тракторов типа МТЗ, Т-150, Т-150К, Т-4А, Т-130 и экс- каваторов
18 - 24	8,4; 9,6; 10,8; 12,6 14,4	6	12	СТО тракторов К-701, автомо- билей МАЗ, КрАЗ, КаМАЗ. Ре- монт тракторов К-701, Т-130.

ОБЩАЯ КОМПОНОВКА ПРОИЗВОДСТВЕННОГО КОРПУСА. ПОСТРОЕНИЕ СХЕМЫ ГРУЗОПОТОКОВ

Общая компоновка проводится на основании расчетов площадей участков и общей длины линии основного потока. Участки на плане производственного корпуса размещаются из условия наикратчайшего пути перемещения ремонтируемых агрегатов, обеспечения взаимосвязи разборочно-сборочных участков и участков по восстановлению деталей, соответствия ходу техпроцесса и направлению основного грузопотока.

Проверка правильности компоновки осуществляется с помощью графика грузовых потоков. Для выявления лучшего варианта с меньшим числом оборотных и пересекающихся грузопотоков составляют несколько схем и анализируют их. Исходными данными для построения графика грузопотоков является ориентировочное распределение грузопотоков при ремонте полнокомплектных тракторов (табл. 6.10).

Основные рекомендации и требования к разработке общей компоновки производственного корпуса:

размеры въездных и выездных ворот назначают в зависимости от габаритов ремонтируемых объектов (ширину ворот принимают на 0,6 м больше ширины ремонтируемого объекта);

согласно заданию на курсовой проект, восстановление двигателей в проектируемом корпусе не предусматривается, и соответствующая масса грузов направляется в специализированный цех;

испытательный участок целесообразно размещать рядом с моторемонтным, инструментально-раздаточную кладовую – со слесарно-механическим участком;

контрольно-сортировочное отделение, склад запасных частей и материалов, комплектовочное отделение следует располагать в одном месте (аналогично компонуют и другие взаимосвязанные подразделения);

производственные подразделения производственного корпуса не рекомендуется разделять перегородками, если это не оговорено правилами техники безопасности и пожарной безопасности;

в здании корпуса рекомендуется предусматривать несколько взаимно перпендикулярных магистральных проездов, причем желательно иметь их сквозными (количество и

расположение магистральных проездов определяются размерами и компоновкой корпуса, а также технологическими связями с подразделениями предприятия);

согласно противопожарным требованиям огнеопасные (тепловые) участки (сварочный, кузнечный и т. д.) рекомендуется располагать группами у наружных стен и изолировать от других помещений огнестойкими стенами, рядом с огнеопасными участками нельзя располагать участки с легковоспламеняющимися производствами (обойный, окрасочный);

по санитарно-гигиеническим требованиям необходимо изолировать участки с вредными выделениями и шумами (гальванические, медницко-радиаторные, аккумуляторные, полимерных материалов, испытательные и др.);

при компоновке трудно обеспечить совпадение расчетных площадей с принятыми, поэтому допускается их расхождение в пределах $\pm 15\%$.

Таблица 6.10 Примерное распределение грузопотоков при ремонте полнокомплектных тракторов

Откуда	Куда	Масса деталей, % от мас- сы трактора
Участок приемки	Разборочно-моечный участок	100
Разборочно-моечный уча- сток	Контрольно-сортировочный участок	7080
То же	Рамное отделение	1722
То же	Радиаторное отделение	25
То же	Обойное отделение	1,52,5
То же	Участок ремонта топливной аппаратуры и электрообору- дования	1,52,5
Контрольно-сортировочный участок	Комплектовочное отделение	2535
То же	Склад деталей, ожидаю- щих ремонта	3035
То же	Склад утиля	1215
Склад деталей, ожи- дающих ремонта	Кузнечное отделение	46
То же	Сварочно-наплавочное отделение	2530
Кузнечное отделение	То же	35
То же	Слесарно-механическое отделение	12
Сварочно-наплавочное отделение	То же	2530
Слесарно-механическое отделение	Полимерное отделение	46
То же	Термическое отделение	1216
Полимерное отделение	Слесарно-механическое отделение	46
Термическое отделение	То же	1216
Слесарно-механическое отделение	Комплектовочное отделение	1520
То же	Сборочное отделение	1012

Склад запасных частей	Комплектовочное отделение	1012
То же	Отделение ремонта двигателей	23
То же	Сборочное отделение	35
Рамное отделение	То же	1520
Комплектовочное отделение	Отделение ремонта двигателей	1012
То же	Сборочное отделение	1520
Участок ремонта топливной аппаратуры и электрооборудования	Отделение ремонта двигателей	0,51,5
То же	Сборочное отделение	0,51,5
Отделение ремонта двигателей	Испытательная станция	1318
Испытательная станция	Сборочное отделение	1318
Радиаторное отделение	То же	25
Обойное отделение	То же	1,52,5
Сборочное отделение	Малярное отделение	100
Малярное отделение	Участок сдачи	100

Ширину магистральных проездов устанавливают в зависимости от вида и количества механизированного транспорта. На ремонтных предприятиях, где имеется до 5 транспортных единиц (электрокары, электропогрузчики), принимают магистральные проезды с односторонним движением шириной 3,0...3,5 м.

Пример компоновки цеха с указанием схемы грузопотоков приведен на рис. 6.4.

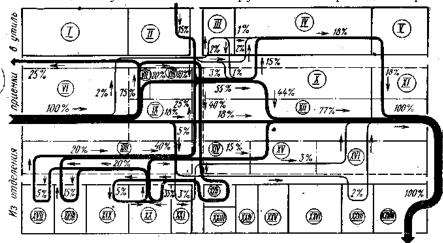


Рис. 6.4. Схема грузопотоков и общей компоновки корпуса ремонтного предприятия с прямым потоком

I — бытовые помещения; II — склад запасных частей и материалов; III — отделение топливной аппаратуры и электрооборудования; IV - отделение ремонта двигателей; V — испытательная станция; VI и VII — разборочно-моечное и контрольно-сортировочное отделения; VIII — комплектовочное отделение со складом; IX — рамное отделение; X — отделение ремонта и сборки агрегатов; XI — участок устранения дефектов; XII — отделение сборки; XIII — слесарномеханическое отделение; XIV — участок ремонта навесного оборудования; XV — жестяницкое отделение; XVI — участок ремонта кабин; XVII и XVIII — полимерное и термическое отделения; XIX и XX — кузнечное и сварочно-наплавочное отделения; XXI — медницко-радиаторное отделение; XXII — склад деталей, ожидающих ремонта; XXIII — компрессорная; XXIV — инструментально-раздаточная кладовая; XXV — инструментальное отделение; XXVI — отдел главного механика; XXVII и XXVIII — обойное и малярное отделения.

Значения массы транспортируемых грузов на рис. 2.4 выражены в процентах от общей массы ремонтируемого объекта. Толщина линий грузопотоков соответствует в определенном масштабе массам транспортируемых грузов.

При вычерчивании компоновочного плана здания с помощью принятых обозначений указываются габаритные размеры здания, ширина пролета и шаг колонны, маркировка сетки колон, стены, перегородки, дверные и оконные проемы, подъемно-транспортные установки, а также линия основного потока с объектами ремонта и рабочими местами, находящимися на ней. Условные обозначения приведены в литературе [1-2].

ВЫБОР ПОДЪЕМНО-ТРАНСПОРТНЫХ СРЕДСТВ

Подъемно-транспортное оборудование (домкраты, лебедки, тали, тельферы, консольные краны, кран-балки, мостовые краны, тележки, автокары, конвейеры, рольганги, автопогрузчики, штабелеры и др.) предназначено для механизации трудоемких процессов, связанных с подъемно-транспортными и погрузочно-разгрузочными работами в производственном процессе ремонтного предприятия.

При выборе подъемно-транспортных средств (ПТС) необходимо руководствоваться разработанным графиком грузопотоков и табл. 6.11.

Произведенный выбор должен быть обоснован характером выполняемых работ, зоной обслуживания возможностью размещения ПТС на участке, интенсивностью грузопотока, габаритами транспортируемых объектов и т.п. Грузоподъемность принимаемого оборудования должна соответствовать максимальной массе транспортируемых и поднимаемых объектов.

Количество ПТС принимается из опыта работы, по типовым проектам или результатам расчета. При выполнении укрупненного расчета в курсовом проекте допускается при выборе числа мостовых кранов принимать следующие значения:

для разборочно-сборочных участков – один кран на 30...40 м длины участка; для слесарно-механических – один кран на 40...80 м длины.

При расчете конвейера, если он требуется в производственном процессе ремонтного предприятия, определяют его основные параметры: необходимую скорость перемещения конвейера, шаг перемещения ремонтируемых объектов, длину конвейера. Формулы для расчета приведены в учебной литературе.

Таблица 6.11 Подъемно-транспортное оборудование ремонтных предприятий

ПТО	Грузопод - ъемность <i>Q</i> , т	Длина пролета L , м	Угол поворота, град	Область применения
Мостовой одно- балочный кран с электроталью	1, 2, 3, 5	5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17		В разборочно-моечном и ремонтно-монтажном цехе (отделении)
Монорельс с электро- тельфером или электроталью	0,15; 0,25; 0,5; 1; 2; 3			В цехах и отделениях мойки, дефектовки, моторемонтном, медницко-жестяницком, ремонта СХМ, ТО автомобилей, механическом

Кран-укосина с электроталью	0,251,0	1,24	До 270	В медницко-жестяницком, ремонта топливной аппаратуры, механическом и других отделениях, где требуется подъем и перемещение грузов в зоне рабочего места или к другому рабочему месту
Универсальный передвижной стенд УРОС-Б2 для ремонта тракторов, комбайнов, автомобилей	До 6			Для сборки тракторов, комбайнов и автомобилей; устанавливается в сборочном отделении на рельсовом пути
Электрофициро- ванная кран- балка	До 3			Для сборки тракторов, комбайнов и автомобилей; устанавливается в монтажном (сборочном) отделении
Универсальный передвижной стенд УСРД-1 для ремонта двигателей	До 1,5			Для сборки двигателей; устанавливается в мотороремонтном и испытательном отделениях
Ручные тележки	0,3; 0,8; 1			Для транспортирования агрегатов, сборочных единиц и деталей машин внутри отделений и между ними
Рольганг	До 1000 кг/м	Ширина до 0,6 м		Для перемещения грузов с одно- го рабочего места на другое

ПЛАНИРОВКА ПРОИЗВОДСТВЕННОГО УЧАСТКА

Планировкой подразделений занимаются после разработки общего компоновочного плана корпуса. Вычерчивают в соответствующем масштабе план корпуса с изображением строительных элементов, площадей всех подразделений и магистральных проездов. При расстановке оборудования, рабочих мест и коммуникаций соблюдают следующие основные требования.

Оборудование располагают в порядке последовательности выполнения технологических операций: разборки, мойки, дефектации и сортировки, последующей комплектации.

Проходы, проезды должны позволять проводить монтаж, демонтаж и ремонт оборудования, обеспечивать удобство подачи ремонтируемого объекта, инструмента, уборки отходов и безопасность работы.

Выбранные подъемно-транспортные средства должны быть увязаны с технологическим процессом и расположением оборудования так, чтобы достигнуть кратчайшего пути перемещения грузов без перекрещивания грузопотоков и отсутствия помех на проходах, проездах и путях движения людей.

Расстановка оборудования должна предусматривать возможность изменения планировки при использовании более прогрессивных технологических процессов.

При планировке стараются рационально использовать не только площадь, но и высоту здания для размещения подвесных подъемно-транспортных устройств, инженерных коммуникаций и др.

На технологической планировке участка, указанного в задании на курсовой проект (приложение Д), должны показываться строительные элементы зданий, перегородки с проемами для ворот, дверей и окон, рельсовые пути для внутрицехового транспорта, тоннели, трапы, люки и другие проемы, влияющие на расстановку оборудования, всё технологическое, контрольно-испытательное, подъемно-транспортное оборудование — верстаки, стеллажи и т. п., места для складирования сборочных единиц, деталей, материала, заготовок и т. п., проходы и проезды, расположение подвалов и антресолей с указанием их высотных отметок и т. д.

Технологическое оборудование на планах изображают упрощенными контурами (рис. 6.5) с учетом крайних положений перемещающихся частей, открывающихся дверей, откидных кожухов, а также с учетом крайних положений, устанавливаемых на них объектов ремонта.

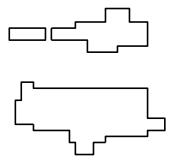


Рис. 6.5. Примеры изображения контуров

Все виды оборудования номеруют сквозной порядковой нумерацией, обычно слева направо и сверху вниз. Номер оборудования по спецификации указывают внутри контура арабскими цифрами или вне его в конце выносной линии. Подъемно-транспортное оборудование нумеруют после технологического. Производственный инвентарь (разметочные плиты, контрольные верстаки, столы, стеллажи) на плане изображают по контуру оборудования.

Вне контура оборудования дают условные обозначения подвода электроэнергии масла, эмульсии, воздуха, воды, пара, местных отсосов, сливов отработанной жидкости, а также рабочего места. Рабочее место в виде круга диаметром 500 мм (в соответствующем масштабе) показывают возле оборудования. Одну половину круга затушевывают. Светлая половина круга, обозначающее лицо рабочего, должна быть обращена к оборудованию.

Расстановку оборудования выполняют с учетом существующих требований; норм расстояний между оборудованием и элементами зданий, норм ширины проездов и норм расстояний между оборудованием. Соответствующие нормы расстояний приведены в учебной и справочной литературе. Для координирования положения оборудования на участке его привязывают к строительным элементам (как правило, к колоннам) зданий. Для оборудования, устанавливаемого у наружных стен, допускается его привязка к внутренним поверхностям наружных стен.

Спецификацию оборудования по форме таблицы 6.12 согласно требованиям ЕСТД размещают в расчетно-пояснительной записке.

Таблица 6.12 Спецификация оборудования

	Занимаемая площадь, м ²	Уста- новлен- ная мощ- ность электро- дви-	Примечание
--	---------------------------------------	--	------------

		Единицей оборудования	Всего	гателей, кВт	

ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

В технологической части курсового проекта необходимо разработать комплект документации по основным технологическим процессам восстановления сборочных единиц или деталей тракторов. Исходными данными для выполнения технологической части являются: наименование и тип конкретного сборочного узла, а также детали (приложение 1).

ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА РАЗБОРКИ

Проектирование технологических процессов разборки заключается в составлении маршрутной карты (МК), карты эскизов (КЭ), ведомости оснастки, карты типового технологического процесса очистки и ведомости деталей к этому процессу.

Процесс разборки составляется как для всего изделия (общая разборка), так и для его составных частей. В курсовом проекте предполагается разработка КЭ и МК разборки сборочной единицы трактора.

Карта эскизов выполняется на листе формата А3 и размещается на листе 5 графической части курсового проекта. Эскиз допускается выполнять без соблюдения масштаба, но с сохранением пропорций. Необходимое число изображений (видов, разрезов, сечений и выносных элементов) на эскизе устанавливают из условия обеспечения наглядности и ясности взаимного расположения деталей в сборочной единице. Все детали нумеруют арабскими цифрами, указываемые как номера позиций. Нумерацию производят по ходу часовой стрелки. Допускается на карте эскизов приводить технические требования, которые размещают справа от изображения или под ним. На карте необходимо указать наименование и номер по каталогу сборочной единицы, число листов и номер (номера) операций, к которым сделан эскиз.

Маршрутная карта выполняется на листе формата A3 и размещается на листе 5 графической части под соответствующей картой эскизов. Исходными данными для разработки МК служат чертеж сборочной единицы, технические требования на разборку и типовые технологические процессы ремонта машин (ГОСНИТИ).

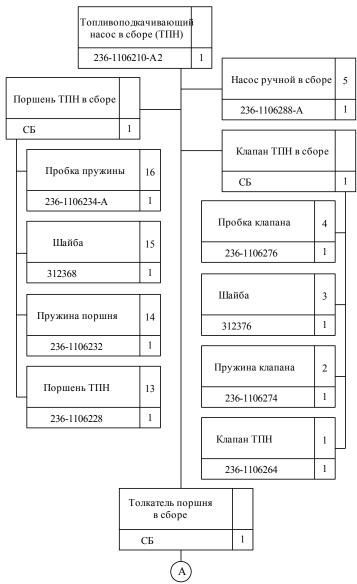

Перед составлением МК разрабатывается и описывается в расчетно-пояснительной записке рациональная схема разборки, то есть заданная сборочная единица расчленяется на составные элементы так, чтобы осуществить разборку максимального числа элементов независимо друг от друга. Схема разборки строится так, чтобы сборочные единицы и детали были расположены в том порядке, в каком их можно снимать при разборке. Схему изображают прямой линией, к которой примыкают прямоугольники, обозначающие сборочные единицы и детали. Прямоугольник делится на 4 части, где указываются: наименование детали, номер позиции по КЭ, номер по каталогу, количество деталей или сборочных единиц (рис. 6.6).

Рис. 6.6. Элемент структурной схемы разборки

В МК разборки в графе «Операция» записывается номер операции, кратный пяти, например: 005, 010, 015 и т.д. Наименование операций в МК приводится в форме прилагательного, а содержание операций записывается кратко, четко, в повелительной форме. В графах «Оборудование» и «Приспособление и инструмент» указывается наименование, ГОСТ или инвентарный номер на соответствующую технологическую оснастку.

В качестве примера на рисунках 6.7, 6.8 и 6.9 приведены структурная схема разборки, карта эскизов и маршрутная карта разборки (топливоподкачивающего насоса) двигателя ЯМЗ-238Н.

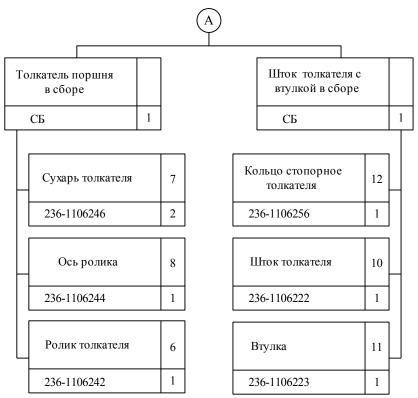


Рис. 6.7. Структурная схема разборки топливоподкачивающего насоса двигателя ЯМЗ-238H

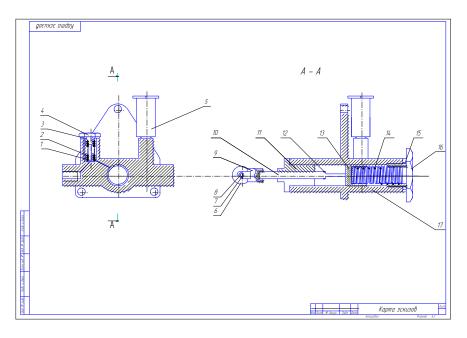


Рис. 6.8. Карта эскизов технологического процесса разборки топливоподкачивающего насоса двигателя ЯМЗ-238H

_		- 1						-					1	1							
			${ m T}_{{ m II.3.}}$	${ m T}_{ m mr}$	2,1	2,6															
0001-1				бъем про- зв. партии																	
	00002-1		Код тар.с ет.	Код вида нор- мы	X	0C															
. 01102.00001-1	1-10000.00002-1	<u>ν</u>	Кол. одн. обр.д ет	Един -ца норм																	
"]	"]	Литера	К-во раб.	Разр. Ра- боты Код		8															
			К-т шт.в р.	Код проф																	
	236-1106210-A2	ТПН	Приспособление и инструмент	(код, наименова- ние)	Ключ гаечный	двусторонний	$10 \times 12, 13 \times 17,$	19×22 FOCT 16984	Отвертка (М11-	-3332-00)	Молоток	Комплект инстру-	мента ПИМ-1878					Приспособление	из комплекта	OIIP-1883	
	КФ РГАУ Маршрутная карта 23		Оборудование (код, наиме-	нование, инвентарный но- мер)	Стенд для разборки	Топливной аппаратуры	OP-1379											Пресс ОКС-1071			
			—————————————————————————————————————	05 K3 ± 20102.00001-1	Поставить и закрепить ТПН	Снять насос ручной (5)	10 Снять пробку пружины (16)	Снять шайбу (15), пружину	(14), вынуть поршень (13)	Отвернуть пробку клапана	(4), снять шайбу (3), пружину	(2), вынуть клапан (1)	20 Снять толкатель поршня,	удалить сухари толкателя (7)	выбить ось ролика (8), снять	ролик толкателя (6)	25 Beinpeccobath bryjiky (11),	разжать кольцо (12), вынуть	шток толкателя (10) из втулки		
	Ķ		Учас	сток	1			1.						2.				2			
			Ц	ex	2																

ПРОЕКТИРОВАНИЕ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ

В курсовом проекте предполагается выполнение разработки технологической документации на восстановление детали, указанной в задании на проект (см. приложение Д).

Проектирование процесса восстановления детали включает в себя: выбор рационального способа восстановления деталей, выполнение рабочего чертежа детали или карты эскизов, разработка маршрутной карты восстановления.

Рациональный способ восстановления деталей определяют, пользуясь критериями: технологическим (или критерием применимости), техническим (долговечности) и технико-экономическим (обобщающим).

Технологический критерий определяет возможность применения способа восстановления, исходя из конструктивно-технических особенностей детали, к которым относятся: геометрическая форма и размеры, материал, термическая или другой вид поверхностной обработки, твердость, шероховатость поверхности, точность изготовления, характер нагрузки, вид трения и изнашивания, величина износа. При использовании указанного критерия следует руководствоваться накопленным опытом, справочной технической литературой, технологическими возможностями проектируемого ремонтного предприятия (наличием соответствующего оборудования).

Технический критерий оценивает каждый из выбранных способов восстановления с точки зрения обеспечения работоспособности детали после восстановления. Технический критерий имеет комплексную количественную оценку — коэффициент долговечности k_{∂} , который определяется по формуле:

$$k_{\partial} = k_u k_{\beta} k_c k_n$$
, (6.21)

где k_u , k_e k_c — соответственно, коэффициенты износостойкости, выносливости и сцепляемости покрытий (табл. 13); k_n — поправочный коэффициент, учитывающий фактическую работоспособность восстановленной детали в условиях эксплуатации (k_n = 0,8...0,9).

Исходя из данного критерия, рациональным будет тот способ, у которого $\,k_\partial \to \max\,.\,$

Окончательное решение о целесообразности выбранного способа (способов) восстановления принимается по технико-экономическому критерию. Он связывает себестоимость восстановления детали с её долговечностью после устранения всех дефектов. Целесообразность восстановления определяется по формуле Казарцева В.И.:

$$C_{\scriptscriptstyle \theta} \leq k_{\scriptscriptstyle \partial} C_{\scriptscriptstyle H}$$
, (6.22)

где C_{θ} – стоимость восстановления детали; C_{H} – стоимость новой детали.

При отсутствии сведений о стоимости восстановления, можно воспользоваться формулой Шадричева В.А.:

$$k_m = \frac{C_{e.1.M^2}}{k_{\phi}}$$
,(6.23)

где k_m – коэффициент технико-экономической эффективности; $C_{e.1.m^2}$ - стоимость восстановления 1 м² изношенной поверхности детали (см. табл. 6.13).

Эффективным будет считаться тот способ, у которого $k_m \to \min$. В случае, если k_m будет больше стоимости 1 m^2 новой детали, то восстановление детали таким способом является нецелесообразным.

Установив рациональные способы восстановления, приступают к выполнению ремонтного чертежа на деталь или к разработке карты эскизов.

Ремонтный чертеж является первичным документом, определяющим перечень устраняемых дефектов, применяемые способы восстановления, требования к качеству восстановленных деталей. Ремонтный чертеж восстанавливаемой детали разрабатывается согласно ГОСТ 2.604-2000 «Чертежи ремонтные. Общие требования».

При разработке ремонтных документов используют следующие термины:

- ремонтный размер размер, установленный для ремонтируемого изделия или для изготовления нового изделия взамен изношенного и отличающийся от аналогичного размера изделия по рабочему чертежу.
- категорийный ремонтный размер ремонтный размер, установленный для определенного вида и (или) категории ремонта. Например, для текущего, среднего или капитального ремонта; для 1-го, 2-го, 3-го вариантов ремонта.
- пригоночный ремонтный размер ремонтный размер, установленный с учетом припуска на пригонку изделий «по месту».

Таблица 6.13 Характеристика способов восстановления деталей

Характеристика		оэффици		<u> </u>		_ 2_	1	-0 - <u>K</u> -
Способ восста- новления	Износостойкости	Выносливости	Сцепляемости	Долговечности	Расчетная толщина покрытия, мм	Трудоемкость восс- тановления, чел-ч/м ²	Себестоимость восс- тановления, руб/м ²	Коэффициент технико- экономической эффек- тивности, руб/м²
Ручная дуговая сварка	0,7	0,6	1	0,42	5	60	97,5	232
Ручная газовая свар- ка	0,7	0,7	1	0,49	3	72	117,0	238
Ручная аргонодуговая сварка	0,7	0,7	1	0,49	4	56	91,4	187,0
Наплавка в среде CO_2	0,72	0,9	1	0,63	3	28	45,5	72,2
Наплавка под слоем флюса	0,91	0,87	1	0,79	2-3	30	48,7	61,5
Вибродуговая наплавка	1	0,62	1	0,62	2-3	32	52	83,8
Наплавка в среде пара	0,9	0,75	1	0,69	2-3	28	44,6	64,8
Хромирование	1,67	0,97	1,82	1,72	0,3	54,6	88,6	51,5
Осталивание	0,91	0,82	0,65	0,58	0,5	18,6	30,2	52,0
Пластическое деформирова-ние	1	0,9	1	0,9	2	36,2	58,8	65,2
Обработка под ремонтный размер	0,95	0,9	1	0,86	0,2	16,7	27,7	31,8
Постановка доп. деталей	0,9	0,9	1	0,81	5	148	242	298
Электромеха- ническое высажива- ние	1,1	1	1	1,1	0,2	9	14,6	13,8

Ремонтные чертежи разрабатывают в дополнение к ремонтным документам или как самостоятельные документы.

Для простых изделий допускается разрабатывать ремонтные чертежи вместо руководства по ремонту и технических условий на ремонт. К ремонтным чертежам относится и чертежи дополнительных или новых деталей с ремонтными размерами.

Допускается в комплект ремонтных чертежей включать расчеты размерных и кинематических цепей, расчеты изделий (деталей, сборочных единиц и т. п.) на прочность и другие необходимые документы.

На ремонтных чертежах:

- помещают только те данные, которые отличны от данных соответствующих документов, входящих в комплект рабочей конструкторской документации;
- указывают только те размеры, предельные отклонения, натяги, зазоры и другие данные, которые должны быть выполнены и проверены при ремонте изделия;
- изображают только те виды, разрезы, сечения, которые необходимы для ремонта изделия.

- поверхности, подлежащие обработке при ремонте, выполняют сплошной толстой основной линией, остальные части изображения сплошной тонкой линией (рис. 6.10).
- если у отдельных элементов ремонтируемого изделия меняется конфигурация, то измененную часть показывают сплошной толстой основной линией, а неизменную часть сплошной тонкой линией (рис. 6.11).

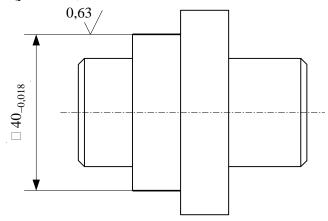


Рис. 6.10. Изображение поверхностей, подлежащих обработке.

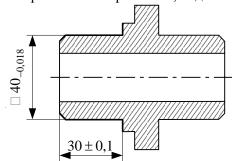


Рис. 6.11. Изображение изменяемой части ремонтируемой детали.

При ремонте изделия наплавкой, заливкой (при помощи сварки, пайки и т. п.) на ремонтном чертеже указывают наименование, марку, размеры материала, используемого при ремонте, а также обозначение стандарта на материал (рис. 6.12).

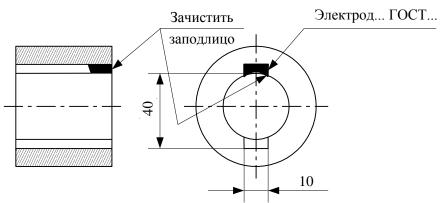
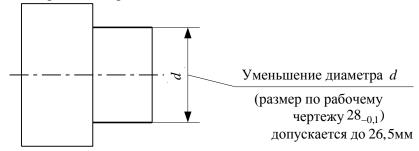



Рис. 6.12. Сведения о материалах, используемых при ремонте детали

На ремонтных чертежах категорийные и пригоночные размеры, а также размеры изделия, ремонтируемого снятием минимально необходимого слоя материала, проставляют буквенными обозначениями, а их числовые значения и другие данные указывают на полках линий-выносок или в таблице (рис. 6.13).

На ремонтных чертежах изделий для определения способа ремонта помещают технологические требования, которые являются единственными для восстановления эксплуатационных характеристик изделия. В технических требованиях указывают: допустимые отклонения

размеров, шероховатость восстановленных поверхностей, разброс твердости, допустимость наличия пор, раковин и отслоений, прочность сцепления нанесенного слоя и других параметров, обусловленных применением того или иного способа, а также допуска расположения поверхностей, которые должны быть выдержаны в процессе восстановления.

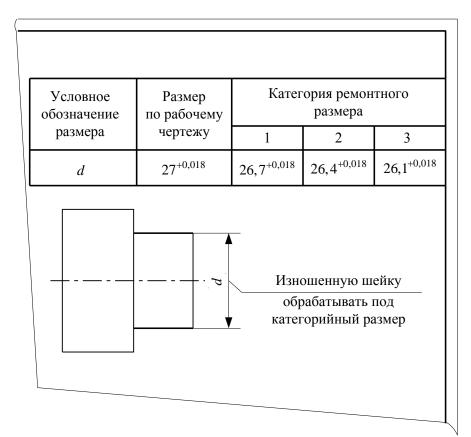


Рис. 6.13. Способы указания размеров ремонтируемых поверхностей

Технологические требования, относящиеся к отдельному элементу изделия, помещают на ремонтном чертеже, как правило, рядом с соответствующим элементом или участком изделия.

На ремонтном чертеже допускается указывать одновременно несколько вариантов ремонта одних и тех же элементов изделия с соответствующими разъяснениями на чертеже. На каждый принципиально отличный вариант ремонта изделия выполняют самостоятельный чертеж.

Если при ремонте изделия в него вводят одну или несколько деталей (втулку, стопор и т. п.) или деталь при ремонте заменяют сборочной единицей, аналогичной детали (т. е. состоящей из нескольких составных частей), то ремонтный чертеж выполняют как сборочный.

На ремонтных чертежах деталей содержание графы «Материал» основной надписи должно соответствовать содержанию аналогичной графы рабочего чертежа детали. Обозначение отмененных стандартов на материалы не указывают.

Обозначение ремонтного чертежа получают введением в обозначение этих документов кода «Р» (ремонтный). Например, обозначение ремонтного чертежа детали

АБВГ.721372.001Р. Обозначение ремонтного чертежа с пригоночным размером получают добавлением буквы «П» к обозначению ремонтного чертежа.

Обозначение ремонтных чертежей вариантов ремонта одной и той же детали получают добавлением к обозначению изделия буквы «Р» и через тире – римских цифр I, II (соответственно для первого, второго вариантов ремонта).

Вместо ремонтного чертежа допускается разработка карты эскизов. Она составляется по ГОСТ 3.1118-82, форма 7. На карте эскизов указываются данные, необходимые для выполнения технологических процессов восстановления (размеры, предельные отклонения, обозначения шероховатости, технические требования). Таблицы, схемы, технические требования, а также номера и наименование дефектов указывают справа от изображения или под ним. Восстанавливаемые поверхности на карте эскизов обводят сплошной линией в 2...3 раза толще основной и нумеруются арабскими цифрами в направлении движения часовой стрелки. Номера восстанавливаемых поверхностей указываются в окружности диаметром 6...8 мм и соединяют с размерной линией.

После выполнения ремонтного чертежа или карты эскизов приступают к разработке маршрутной карты. При этом строго придерживаются следующих основных положений:

- в первую очередь необходимо назначить выполнение операций по восстановлению базовых поверхностей (исправление центровых отверстий, устранение неплотностей, правка и т.п.);
- затем предусматривают операции, при которых снимается наибольший слой металла черновая обработка (к таким операциям можно отнести проточку поверхности перед наплавкой, нарезание «рваной» резьбы перед металлизацией или гальванизацией, удаление изношенной резьбы и т.п.);
- желательно совмещать восстановление нескольких изношенных поверхностей, если их восстанавливают одним технологическим способом (сваркой, наплавкой, гальванизацией и т.п.);
- если при восстановлении детали используется механическая обработка и обработка, связанная со значительным нагревом (сварка, наплавка, закалка), то их выполняют в таком порядке: черновая механическая обработка (или обработка с нагревом детали), правка, чистовая механическая операция;
 - чистовые и черновые операции не совмещаются;
 - финишные и суперфинишные операции назначаются в конце техпроцесса;
- контрольные операции предусматриваются, как правило, в конце технологического процесса;
 - наименование операции записывают в форме прилагательного («Токарная»);
- содержание операций записывается кратко и чётко и выражается глаголом в повелительном наклонении, приводится наименование восстанавливаемого элемента детали (например, «Наплавить поверхность (5) до номинального размера»);
- для того, чтобы не составлять ведомость технического контроля, в графе «Наименование и содержание операции» приводят технические требования и контролируемые размеры (например, «Осталить отверстие (3) до диаметра $72,2^{+0,12}$ »).
- при восстановлении одноимённых элементов детали указывается их число (например, «Сверлить 4 отверстия»);
 - операции перемещения можно в состав технологических операций не включать.

Ремонтный чертеж или карту эскизов выполняют на листе 4 графической части курсового проекта (формат A2). Маршрутная карта и пояснения к ней выполняются в расчетно-пояснительной записке.

ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СБОРКИ

Процесс сборки в отличие от разборки всегда сопровождается контрольными операциями. Детали собранного узла занимают определенное положение, прилегая друг к другу, поэтому большое значение имеет правильный выбор конструкторских баз.

В курсовом проекте предполагается выполнение разработки следующих документов по технологическому процессу сборки: карты эскизов на формате А3 графической части листа 5 и расположенной прямо под картой эскизов маршрутной карты сборки (формат А3, лист 5).

Требования и правила выполнения карты эскизов процесса сборки аналогичны рассмотренным для процесса разборки. Кроме того, на карте эскизов сборки должны быть указаны данные, необходимые для качественной сборки: установочные и присоединительные размеры с предельными отклонениями, типы посадок, технические требования.

Маршрутная карта сборки разрабатывается на основе карты эскизов и технологической структурной схемы рациональной сборки. Структурная схема сборки представляет собой прямую линию, к которой в соответствующих местах примыкают прямоугольники (рис. 3.1), обозначающие детали или сборочные единицы. Структурная схема сборки выполняется с пояснениями в расчетно-пояснительной записке.

При составлении маршрутной карты следует руководствоваться следующим:

- в графе «Операция» записываются номера операций, кратные пяти;
- в графе «Содержание операции» записывается кратко и четко порядок сборки (глаголы в повелительном наклонении) с указанием номера детали или сборочной единицы в круглых скобках (в соответствии с картой эскизов);
- сборку обычно начинают с базовых деталей (блок цилиндров, картер коробки передач);
- контрольные операции записывают, как правило, в конце технологического процесса;
- если в маршрутную карту включают операции по сборке входящей в неё сборочной единицы, то перед этими операциями записывают в виде заголовка обозначение и наименование входящей сборочной единицы, например: «Крышка подшипника»;
- в графах «Оборудование», «Приспособление и инструмент» необходимо указывать наименование, инвентарный номер и ГОСТ на соответствующую оснастку;
- по каждой операции в соответствующих графах указывают код тарифной сетки, разряд работы и норму времени (остальные графы допускается не заполнять).

В качестве примера на рисунках 6.14, 6.15 и 6.16 приведены технологическая схема сборки, карта эскизов и маршрутная карта сборки ведущей шестерни 2-й ступени редуктора трактора МТЗ-50.

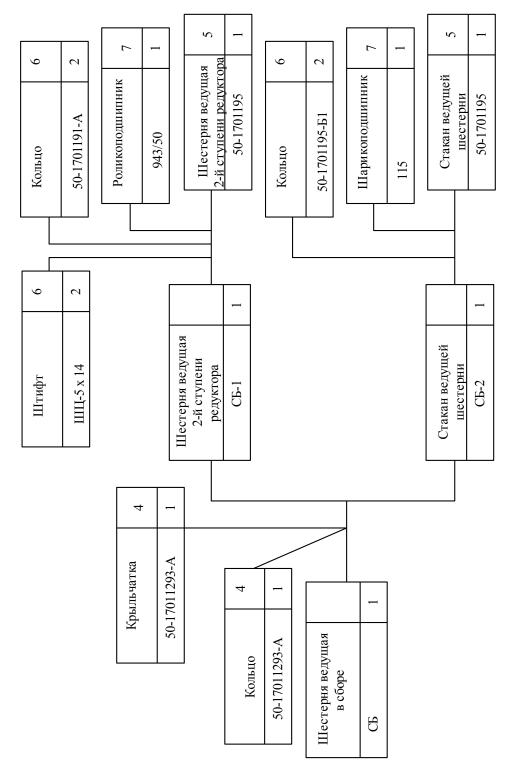


Рис. 6.14. Структурная схема сборки

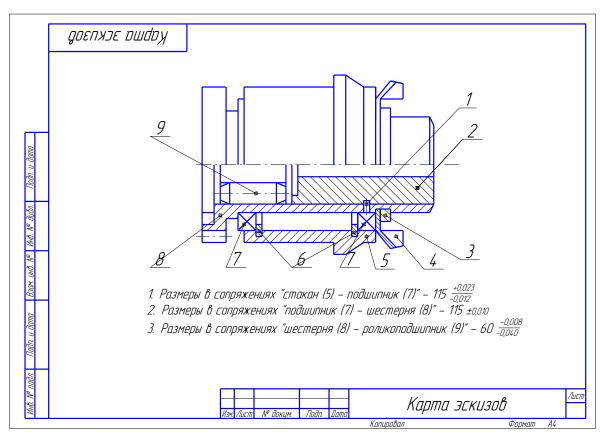


Рис. 6.15. Карта эскизов процесса сборки

			Тп.з.	$T_{ m mr}$															
			Объем пар																
. 01102.00002	10102.00002-1 ث		Код тар.сет.	Код вида нормы			×	X				X	X						
0110 ث	1010 ث	a y	Кол. одн. обр.дет	Ед-ца норм.															
		Литера	К-во раб.	Разр. Работы				2					2						
		·	К-т шт.вр.	Код проф.															
	50-1701190	Шестерня ведущая II ст.	Оборудование (код, наиме- Триспособление и	инструмент (код, наименование)			Стенд ПИМ-1468-	17-020-ГОСНИТИ											
	5 Illecrep		(код, наиме-																
	OHIGI COA DO CAMBARA	маршрутная карта	Оборудование	нование, инвентарныи но- мер)			Верстак ОРГ 1488-01	Подставка ОПТ-10779											
	Mosm	Mapm	аименование и содержани	операции	Шестерня ведущая	и редуктора	K3 ت 20188.00001	Запрессовать роликопод-	шипник (9), гнездо внут-	та (2), устано-	вить штифт (1)	Стакан ведущей шестерни	K3 ئ 20188.00001	Запрессовать шарикопод-	шипники (7), установить	кольца (6) и т.д.			
	КФ РГАУ МСХА				Шестерн	Пступен	КЭ Ё 2(Запрессова	шипник (9)	Реннего вала (2), уст	ВИТЬ П	Стакан веду	KЭ ₺ 20	Запрессовал	шипники (7	кольца			
	L A V.	I Ay	Опер		05							10							
	VA D	N. P.	Уча		5														
		-	Ц	ex	2				TAC		16	. N							

Рис. 6.16. Маршрутная карта сборки

Качество машин зависит не только от совершенства их конструкции, но и в большей степени от уровня технологии их производства. Важным составляющим элементом понятия качества является точность. Ее технологическое обеспечение в производственных условиях — главнейшая задача технолога.

Следует иметь в виду, что повышение точности обработки деталей приводит к повышению точности сборки узлов и машины в целом. В результате машина становится более работоспособной, надежной и долговечной.

В связи с изложенным, научно-исследовательская часть курсового проекта посвящается методике исследования точности технологического процесса получения размера детали с целью разработки производственных рекомендаций для повышения точности.

Исследование проводится на машиностроительном или ремонтном предприятии во время прохождения практики. В случае отсутствия опытной информации она задается преподавателем (см. приложение E).

КРИВЫЕ РАСПРЕДЕЛЕНИЯ И ОЦЕНКА ТОЧНОСТИ ОБРАБОТКИ НА ИХ ОСНОВЕ

Статистический метод оценки точности применим в условиях производства большого числа одинаковых деталей, обрабатываемых как на предварительно настроенных станках, так и методом пробных рабочих ходов. Кривые распределения строят следующим образом. Всю совокупность измерений N исследуемой величины (например, какоголибо размера в партии заготовок, обрабатываемых при определенных условиях) разбивают на ряд групп. В каждую группу входят величины, результаты измерений которых находятся в пределах установленного интервала. Интервалы, число которых n, берут в пределах 7—11, откладывают по оси абсцисс, а число измерений N, приходящееся на каждый интервал, откладывают по оси ординат из середины интервала. После соединения нанесенных на график точек получают ломаную линию, называемую полигоном распределения (рис. 6.17,а). При увеличении числа деталей в партии, сужении интервалов и увеличении их числа ломаная линия приближается к плавной кривой.

В машиностроении размеры деталей чаще распределяются по нормальному закону (закону Гаусса). Соответствующая кривая распределения (рис. 6.17, б) имеет симметричную шатрообразную форму.

Закон Гаусса двухпараметрический (параметры σ и a) (рис. 6.17, δ): a — значение абсциссы, при которой ордината y кривой достигает максимума; величина a является центром распределения (группирования) аргумента и в то же время его средним арифметическим;

 σ – среднее квадратичное отклонение аргумента.

Величина σ , являющаяся мерой точности, характеризует форму кривой распределения. При больших значениях σ кривая получается пологой и поле рассеяния растет. При малых значениях σ точность исследуемого метода повышается и кривая получается сильно вытянутой вверх с малым полем рассеяния. По результатам измерений:

$$a = X_{cp} = \frac{\sum_{i=1}^{n} X_{cp,i}}{n}$$
,(6.24)

где $X_{cp,i}$ - значение измеряемого размера в середине i -го интервала; n — интервалы.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_{cp} - X_{cp,i})^{2}}{n}} .(6.25)$$

Число измерений N рекомендуется брать равным 25. При этом погрешность определения σ равна $\pm 15\%$.

Вычислив по данным наблюдений значение σ , можно охарактеризовать точность исследуемого технологического процесса произведением 6σ . Правило «шести сигм» является достаточно простым, удобным и точным для практического использования. Это правило может быть сформулировано следующим образом: точность технологического процесса получения размера детали удовлетворительна, если поле в 6σ не выходит за границы поля допуска на получаемый размер.

Рассмотренный метод позволяет объективно оценить точность процесса обработки. При нахождении величины σ , необходимо при измерениях исключить влияние систематической ошибки, поэтому измерять размеры целесообразно у всех восстанавливаемых деталей в партии.

Вероятное количество бракованных деталей можно определить, построив кривую накопленных опытных вероятностей (рис. 6.17, а), точки которой образуются пересечением абсциссы, равной концу данного интервала, и ординаты, равной сумме вероятности предыдущих интервалов.

Значение опытных вероятностей в каждом интервале определяют по формуле:

$$P_{on,i} = \frac{m}{N}$$
, (6.26)

где m — опытная частота в i -м интервале (число деталей m в i -м интервале); N — общее число деталей (N = 25).

Ломаную кривую рекомендуется графически сгладить с помощью лекала. Наибольшие и наименьшие предельные размеры детали откладывают по оси абсцисс и из этих точек восстанавливают перпендикуляры до пересечения с кривой. Из точек пересечения проводят горизонтальные линии до оси ординат и отсчитывают в % количество бракованных деталей.

В нашем случае количество бракованных деталей составит (рис. 6.26, а): деталей с размерами меньше наименьшего предельного размера -1 шт. ($P_{on}=0.04$; т. е. 4% от 25 штук), больше наибольшего предельного размера -3 шт. ($P_{on}=1-0.88=0.12$, т, е. 12% от 25 шт.).

ПОРЯДОК ВЫПОЛНЕНИЯ ИССЛЕДОВАНИЯ

- 1. Измерить исследуемый размер у 25 деталей и все 25 измерений деталей разбить на 7 равных интервалов, определить для каждого интервала m, P_{on} (формула 6.26). Результаты записать в табл. 6.14.
- 2. По данным табл. 6.14 построить в верхней части листа ватмана кривую накопленных опытных вероятностей (рис. 6.17, а).
- 3. Нарисовать поле допуска на размер детали (рис. 6.17, а), обозначив наибольший и наименьший ее предельные размеры.

Таблица 6.14

Интервалы, мм	40,1-40,9	40,9-41,7	•••	•••	•••	•••	•••
m_i	1	4			•••	•••	•••
$P_{on,i}$	0,04	0,16					

- 4. Определить количество бракованных деталей, имеющих размеры меньше наименьшего предельного и больше наибольшего предельного (рис. 6.17, a).
- 5. По формуле (6.24) рассчитать среднее арифметическое из проведенных измерений (X_{cp}) и записать полученное число.
- 6. По формуле (6.25) рассчитать среднее квадратическое отклонение аргумента σ и записать полученное число.
- 7. На листе ватмана под кривой накопленных опытных вероятностей построить в выбранном масштабе поле допуска на исследуемый размер (рис. 6.18, а) со всеми обозначениями, показанными на рис. 6.18, а.
- 8. Середина поля в 6σ совпадает со средним арифметическим из проведенных измерений X_{cp} . Нарисовать X_{cp} согласно рис. 6.18, б, соблюдая выбранный масштаб.
- 9. От вертикальной линии, соответствующей X_{cp} , отложить в выбранном масштабе в одну и в другую сторону по 3σ (рис. 6.18, в) и нарисовать поле в 6σ .

ОФОРМЛЕНИЕ ИССЛЕДОВАНИЯ

В расчетно-пояснительной записке при оформлении исследовательской части следует:

- 1. Начертить эскиз детали с обозначением одного исследуемого размера (номинальный размер с отклонениями). Указать назначение детали в машине.
- 2. Описать технологический процесс получения исследуемого размера (последовательность операций и их содержание).
 - 3. Привести таблицу с результатами определения m и $P_{on.i}$.
 - 4. Записать расчеты $X_{cp,i}$ и σ .
- 5. Используя построенную на ватмане кривую накопленных опытных вероятностей, определить вероятное количество бракованных деталей с размерами меньше наименьшего предельного размера и больше наибольшего предельного размера, записав результаты определения.
- 6. Анализируя рис. 6.18, выполненный на ватмане, дать заключение о точности получения исследуемого размера и в случае необходимости рекомендации по повышению точности обработки.

Графическая часть выполняется на 4 листе курсового проекта (формата A2) рядом с ремонтным чертежом восстанавливаемой детали (формат A2). Она включает в себя: в верхней части листа формата A2 — полигон распределения и кривую накопленных опытных вероятностей с построениями для определения количества бракованных деталей (рис. 6.18, а), а непосредственно под ними — поле в 6σ (рис. 6.18, а, б, в).

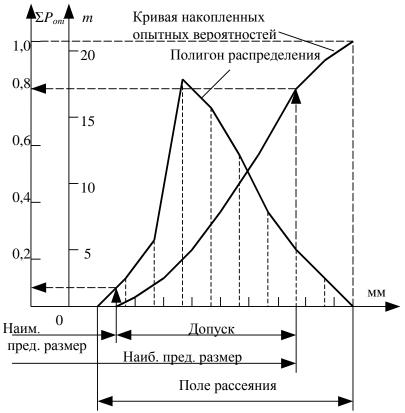


Рис. 6.17. a) Построение полигона распределения и кривой накопленных опытных вероятностей



Рис. 6.17. б) Нормальный закон распределения случайной величины (гауссовский закон)

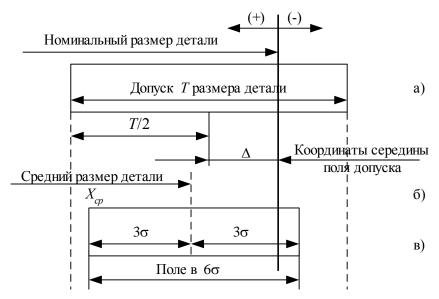


Рис. 6.18. Построение поля в 6σ

7. Учебно-методическое и информационное обеспечение курсовой работы (проекта)

7.1 Основная литература

- 1. Технология сельскохозяйственного машиностроения: методические указания / составитель Е. И. Артамонов. Самара : СамГАУ, 2020. 66 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/143452 (дата обращения: 24.10.2022). Режим доступа: для авториз. пользователей.
- 2. Технологическое оснащение производства машин и оборудования. Лабораторный практикум: учебное пособие / Н. В. Титов, А. В. Коломейченко, И. Н. Кравченко [и др.]. Санкт-Петербург: Лань, 2020. 204 с. ISBN 978-5-8114-4725-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/142340 (дата обращения: 24.10.2022). Режим доступа: для авториз. пользователей.
- 3. Сысоев, С. К. Технология машиностроения. Проектирование технологических процессов: учебное пособие для вузов / С. К. Сысоев, А. С. Сысоев, В. А. Левко. 3-е изд., стер. Санкт-Петербург: Лань, 2022. 352 с. ISBN 978-5-8114-9942-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/201644

7.2 Дополнительная литература

- 4. Мычко, В. С. Основы технологии машиностроения: учебное пособие / В. С. Мычко. Минск: Вышэйшая школа, 2011. 382 с. ISBN 978-985-06-2014-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: URL: http://www.iprbookshop.ru/20244.html.
- 5. Рахимянов, X. М. Технология машиностроения: учебное пособие / X. М. Рахимянов, Б. А. Красильников, Э. 3. Мартынов. Новосибирск: Новосибирский государственный технический университет, 2014. 254 с. ISBN 978-5-7782-2291-5. URL: http://www.iprbookshop.ru/47721.html.
- 6. Техническое обслуживание и ремонт машин в сельском хозяйстве, Москва-Челябинск: ГОСНИТИ, ЧГАУ / Под ред. Черноиванова В.И., 2003. 992 с.
- 7. Черноиванов В.И., Лялякин В.П. Организация и технология восстановления деталей машин. М.: ГОСНИТИ, 2003. 487 с.
- 8. Некрасов С.С. Практикум и курсовое проектирование по технологии сельскохозяйственного машиностроения. М.: Мир, 2004. 240 с.

8. Методическое, программное обеспечение курсовой работы/проекта

8.1 Методические указания и методические материалы к курсовой работе

- 1. Пономарев А.И. Технология производства наземных транспортно-технологических средств. Конспект лекций. Калуга: КФ МГТУ им. Н.Э. Баумана, 2018. 77 с.
- 2. Голубина С.А., Пономарев А.И. Проектирование предприятий автотракторного сервиса: методические указания к выполнению практических занятий. Калуга: КФ МГТУ им. Н.Э. Баумана, 2017. 68 с.

8.2 Перечень программного обеспечения и информационных справочных систем (при необходимости) для выполнения курсовой работы/проекта

- 1. Автоматизированная справочная система «Сельхозтехника» http://www.agrobase.ru (открытый доступ).
- 2. Электронный каталог «Публикации ЦНСХБ» http://www.cnshb.ru (открытый доступ).
- 3. Электронные каталоги «ЦНБ РГАУ-МСХА им. К.А. Тимирязева» www.library.timacad.ru (открытый доступ).
- 4. Электронно-библиотечная система «ЛАНЬ» (http://e.lanbook.com) открытый доступ).
- 5. ООО «Центральный коллектор библиотек «БИБКОМ» (http://www.ckbib.ru) (открытый доступ).
- 6. ООО «Научно-издательский центр ИНФРА-М» (<u>www.infra-m.ru</u>) (открытый доступ).
- 7. Российская государственная библиотека (РГБ) http://rsl.ru (открытый доступ).
- 8. Электронная библиотека диссертаций РГБ http://diss.rsl.ru (открытый доступ).
- 9. ООО "ПОЛПРЕД Справочники" http://polpred.com (открытый доступ).
- 10. Национальный цифровой ресурс Руконт межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум https://rucont.ru (открытый доступ).
- 11. Научная электронная библиотека «КИБЕРЛЕНИКА» http://cyberlenika.ru (открытый доступ).
- 12. Научная электронная библиотека «ELIBRARY» http://elibrary.ru (открытый доступ).
- 13. Справочная правовая система «Гарант» www.garant.ru (открытый доступ).

Пример оформления титульного листа курсовой работы/проекта

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА»

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Калужский филиал

Факультет Агротехнологий, инженерии и землеустройства Кафедра «Механизации сельскохозяйственного производства»

КУРСОВОЙ ПРОЕКТ

По дисциплине: Технология ремонта машин

На тему: Разработка технологического процесса механической обработки деталей узлов сельскохозяйственной техники

				нил (a) студент(ка) группы очной формы обучения
		<u> </u>	A402	труппы очной формы обучения
		Mo	20110	(Ф.И.О.)
				тной книжки цитель:
				(ученая степень, ученое звание, Ф.И.О.)
Регистрация на кафе, (дата) (подр	-	-		_ 20 г
На доработку		Г		
(дат	a)			(подпись руководителя)
К защите допускаетс	Я		_ 20	Г (подпись руководителя)
Дата защиты:	20	Γ.		
Оценка:				
(подпись руководителя)	(подписи чл	енов ко	миссии)

Калуга 2022 г.

/ Ф.Л.Чубаров/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

УТВЕРЖДАЮ

Заведующий кафедрой Механизации сельскохозяйственного производства

Калужский филиал

	«»	202 <u>_</u> Γ.
ЗАДАН	ИЕ	
на выполнение курсо		
по дисциплине: Технология ремонта машин Студент: группа Д-А402 (фамилия, инициалы, индекс группы)		
График выполнения работы: 25% к_4_нед., 50% к_8_нед., 7. 1. Тема курсового проекта:		_16_нед.
 2.1 Анализ детали и технологичности её изготовления. 2.2 Выбор способа получения заготовки. 2.3 Проектирование заготовки с учетом припусков на механич. 3. Разработка технологии механической обработки вала. 	ескую обработку.	
3.1 Разработка схемы механической обработки. 3.2 Расчет режимов резания отдельных операций. 3.3 Нормирование операций и расчет штучного времени 4. Разработка технологии сборки изделия.		
4.1 Разработка технологической схемы сборки.4.2 Разработка маршрутной карты сборки узла5. Технологический процесс установки разработанного меха.	инизма на c/x технику.	
6. Оформление курсовой работы 6.1. Расчетно-пояснительная записка на листах формат 6.2. Перечень графического материала КП (плакаты, схемы, че 6.3. Чертёж заготовки, включая 3d-модель (A2); 6.4. Рабочий чертеж детали (A2)		
6.5. Маршрутная карта изготовления детали (A1); 6.6. Маршрутная карта и технологическая схема сборки узла (д. 6.7. Технологическая маршрутная карта установки рассматрив 5. Выводы.		
Тема задания на курсовой проект: «Разработка технол талей узлов сельскохозяйственной техники», утверждена на за N 21.		
Дата выдачи задания «»202 г.		
Руководитель практики /	<u>/</u>	
Задание получил//	«»	202 r.
<u>Примечание</u> : Задание оформляется в двух экземплярах; один выдаётся студе	енту, второй хранится на	а кафедре.

Приложение В

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ — МСХА имени К.А. ТИМИРЯЗЕВА (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

	Калужский фи.	лиал		
лей	Индивидуальный план вы по дисциплине «Техн тему: Разработка технологического узлов сельскохозяйственной техни дент(ка)	—————————————————————————————————————	федрой Механ Чубаро 202 курсового пр тонта машин» механической	в Ф.Л. _г. ооекта
рук	ОВОДИТЕЛЬ	ство студента пол		
	(Фамилия,	, имя, отчество)		
№	II	Дата в	П	
п/п	Наименование работ	План	Факт	Примечание
1	Разработка технологического процесса восстановления детали			
2	Анализ детали и технологичности её и восстановления.			
3	Выбор способа восстановления детали.			
4	Расчет основных показателей ремонтного производства.			
5	Разработка общей компоновки производственного корпуса.			
6	Расчет количества оборудования.			
7	Планировка ремонтного участка.			
8	Разработка технологической схемы сборки.			
9	Разработка маршрутной карты сборки узла.			
10	Маршрутная карта восстановления детали.			
11	Маршрутная карта и технологическая схема сборки узла.			
12	Заключение, список литературы.			
Сту	дент(ка) группы <u>Д-А402</u> Ф.И.О	.подпись	-	
гук	ОВОДИТЕЛЬ:		1.O.	подпись

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ-МСХА имени К.А. ТИМИРЯЗЕВА. КАЛУЖСКИЙ ФИЛИАЛ (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Калужский филиал

РЕЦЕНЗИЯ

на курсовой проект	
по дисциплине: Технология ремонта машин	
тема: Разработка технологического процесса механической обработки де	талей узлов сель
скохозяйственной техники	
() A	
выполнил студент(ка) <u>3</u> курса группы <u>Д-А 402</u>	
(Фамилия, инициалы студента)	
Рецензент	
(Ф.И.О. преподавателя)	Γ
Критерии оценки	Баллы
1. Правильность постановки целей и задач	2,3,4,5
2.Соответствие курсовой работы заданию	2,3,4,5
3.Оценка структуры выполненной работы	2,3,4,5
4.Стиль изложения и качество оформления работы	2,3,4,5
5. Использование научной и специальной литературы	2,3,4,5
6. Актуальность и степень разработанности темы	2,3,4,5
7. Аргументированность и конкретность выводов и предложений	2,3,4,5
8. Полнота раскрытия вопроса	2,3,4,5
9. Возможность использования в выпускной квалификационной работе	2,3,4,5
Основные замечания по работе: недостаточное количество источников, не ности в оформлении библиографического списка, во введении необходимо уделять самой работе: цели и задачи, методы, краткое содержание глав, пользованных источников.	больше внимани
Допущен к защите (<u>да</u> , нет)	
Замечания по защите: иногда отступает от научного стиля изложения.	
Курсовой проект защищен «»202 г.	
Оценка	
Преподаватель (Подпись) (Фамилия, инициал	
(подпись) (Фамилия, инициа	IDI J

Приложение Д Пример заполнения основной надписи (штампа) на чертежах

			185									
			. 10	10	_ 10	_ 10	15	, 10	, 120			
1									(1)			
									(2) 15	15	_ 15	20
115=55		ł	Должность Фамилия		илия	Подпись	Дата		Стадия	Лист	Листов	
7	ã .		Разработчик Руководит.					(3)	(5)	(6)	(7)	
		Зав. вып. каф. Норм. конт.							(4)	(8)	(8)	
	_6]											

В графах основной надписи и дополнительных графах к ней (номера граф указаны в скобках) приводят:

- в графе 1 и 2 обозначение шифра документа, в том числе: вид документа, год оформления графического документа, номер студеческого билета, номер графического документа. Например шифр документа КП. 2022. 12345. 001, где, КП Курсовой проект, 2022 год оформления графического документа, 12345 номер студенческого билета, 001 номер графического документа;
 - в графе 3 наименование работы;
- в графе 4 наименование изображений, помещенных на данном листе, в соответствии с их наименованием на чертеже. Если на листе помещено одно изображение, допускается его наименование приводить только в графе 4.

Наименования спецификаций и других таблиц, а также текстовых указаний, относящихся к изображениям, в графе 4 не указывают (кроме случаев, когда спецификации или таблицы выполнены на отдельных листах).

- в графе 5 условное обозначение вида документации: У учебный.
- в графе 6 порядковый номер листа документа.;
- в графе 7 общее количество листов документа;
- в графе 8 наименование учебного заведения и его подразделения, разработавшей документ.

Приложение Е

					приложение Е
KII	Расчетно-	организационная часть	Т	ехнологическая ча	сть
рианта	Марки тракторов и	Наименование участка	Узлы для прое техпроц		Деталь для проектирования тех. процес-
No.	годовая программа ремонта <i>N</i>	для разработки его планировки	разборки	сборки	сов восстановления
1	MT3-50, N=500	Слесарно-механический	масляный фильтр дв. Д-50	водяной насос и вентилятор дв. Д- 50	корпус масляного фильтра
2	MT3-50, N=600	Кузнечно-термический	головка цилиндров дв. Д-50	масляный фильтр дв. Д-50	головка цилиндров
3	MT3-50, N=700	Сварочно-наплавочный	опора промежуточ- ного карданного вала	головка цилинд- ров дв. Д-50	первичный вал короб- ки передач
4	MT3-50, N=800	Участок ремонта элек- тро-оборудования	рулевое управление тр. MT3-50	конечная передача тр. МТЗ-50	валик водяного насоса дв. Д-50
5	MT3-50, N=900	Участок ремонта топ- ливной аппаратуры и гидросистем	водяной насос и вентилятор дв. Д-50	рулевое управление тр. МТЗ-50	ротор масляного насоса дв. Д-50
6	T-100M, N=500	Слесарно-механический	головка цилиндров дв. Д-108	поршневая группа дв. Д-108	клапан
7	T-100M, N=600	Кузнечно-термический	водяной насос дв. Д-108	головка цилинд- ров дв. Д-108	вал рулевой
8	T-100M, N=800	Сварочно-наплавочный	вентилятор дв. Д- 108	водяной насос дв. Д-108	валик водяного насоса дв. Д-50
9	K-700, N=500	Участок ремонта электро-оборудования	Турбо-компрессор дв. ЯМЗ-238НБ	водяной насос дв. ЯМЗ-238НБ	втулка выпускного клапана дв. Д - 108
10	MT3-50, N=1000	Участок ремонта топ- ливной аппаратуры и гидросистем	кривошипно- шатунный механизм (без ЦПГ) дв. Д-50	водяной насос и вентилятор дв. Д- 50	коленчатый вал дв. Д- 108 (наплавка)
11	MT3-50, N=1100	Слесарно-механический	передняя ось колеса и ступицы тр. МТЗ- 50	кривошипно- шатунный меха- низм (без ЦПГ) дв. Д-50	шкив вентилятора дв. Д-108
12	MT3-50, N=1200	Кузнечно-термический	конечная передача тр. МТЗ-50	передняя ось колеса и ступицы тр. МТЗ-50	вал турбо- компрессора
13	T-100M, N=700	Сварочно-наплавочный	поршневая группа дв. Д-108	вентилятор дв. Д- 108	коленчатый вал дв. Д – 50
14	K-700, N=600	Участок ремонта элек- тро-оборудования	водяной насос дв. ЯМЗ-238НБ	Турбо- компрессор дв. ЯМЗ-238НБ	ступица трактора МТЗ – 50
15	К-700, N=850	Участок ремонта топ- ливной аппаратуры и гидросистем	вентилятор с приводом дв. ЯМЗ-238НБ	поршневая груп- па дв. ЯМЗ- 238НБ	полуось конечной передачи тр. МТЗ-50
16	T-100M, N=900	Слесарно-механический	кривошипно- шатунный механизм (без ЦПГ) дв. Д-108	масляный насос дв. Д-108	ось вентилятора дв. Д-108

17	T-100M, N=1000	Кузнечно-термический	масляный насос дв. Д-108	кривошипно- шатунный меха- низм (без ЦПГ) дв. Д-108	валик привода водя- ного насоса дв. Д- 108
18	K-700, N=800	Сварочно-наплавочный	кривошипно- шатунный механизм (без ЦПГ) дв. ЯМЗ- 238НБ	вентилятор дв. ЯМЗ-238НБ	вал привода вентилятора двигателя ЯМЗ- 238НБ
19	K-700, N=900	Участок ремонта элек- тро-оборудования	коническая шестерня в сборе тр. К-700	рулевое управление тр. К-700	втулки масляного насоса дв. Д-108
20	T-100M, N=1100	Участок ремонта топ- ливной аппаратуры и гидросистем	механизм заводной рукоятки пускового двигателя П-23	Поддержи- вающий каток	коленчатый вал дв. Д-108
21	T-100M, N=1200	Слесарно-механический	редуктор двигателя П-23 с механизмом включения пусково- го двигателя	механизм заводной рукоятки пускового двигателя П-23	поршневой палец двигателя ЯМЗ-238НБ
22	K-700, N=1200	Кузнечно-термический	Дифферен-циал в сборе тр. К-700	промежуточ-ная опора тр. К-700	ведущая коническая шестерня трактора К – 700
23	K-700, N=300	Сварочно-наплавочный	карданный вал тр. К- 700	односкорост-ной редуктор вала отбора мощности тр. K-700	кронштейн пусковой рукоятки двигателя П – 23
24	K-700, N=100	Участок ремонта элек- тро-оборудования	рулевое управление тр. К-700	коническая шестерня в сборе тр. К-700	корпус редуктора пускового дв. П – 23
25	K-700, N=1100	Участок ремонта топ- ливной аппаратуры и гидросистем	Промежу-точная опора тр. К-700	Дифферен-циал в сборе тр. К-700	ведомая полумуфта дифферен-циала тр. К-700
26	T-100M, N=500	Слесарно-механический	Поддержи-вающий каток	натяжное колесо в сборе	карданная передача тр. К-700
27	T-100M, N=400	Кузнечно-термический	натяжное колесо в сборе	масляный насос дв. Д-108	ведущая коническая шестерня тр. К-700
28	ДТ-75, N=400	Сварочно-наплавочный	кривошипно- шатунный механизм (без ЦПГ) дв. СМД-14	масляный насос дв. СМД-14	корпус масляного насоса
29	ДТ-75, N=500	Участок ремонта элек- тро-оборудования	масляный насос дв. СМД-14	кривошипно- шатунный меха- низм (без ЦПГ) дв. СМД-14	коленчатый вал дв. СМД-14 (ЭКН)
30	ДТ-75, N=600	Участок ремонта топ- ливной аппаратуры и гидросистем	подвеска с опорными катками тр. ДТ-75	Направляю-щее колесо в сборе тр. ДТ-75	опорный каток (тре- щины)
31	ДТ-75, N=700	Слесарно-механический	Направляю-щее колесо в сборе тр. ДТ-75	подвеска с опор- ными катками тр. ДТ-75	ось коленчатая направляю-щего колеса тр. ДТ-75
32	ДТ-75, N=800	Кузнечно-термический	водяной насос и вентилятор дв. СМД-14	форсунка двига- теля СМД-14	валик водяного насоса дв. СМД-14

33	ДТ-75, N=900	Сварочно-наплавочный	форсунка двигателя СМД-14	водяной насос и вентилятор дв. СМД-14	корпус водяного на- соса дв. СМД-14
34	ДТ-75, N=1000	Участок ремонта элек- троо-борудования	шатунно-поршневая группа дв. СМД- 14		блок-картер дв. СМД-14
35	ДТ-75, N=1100	Участок ремонта топ- ливной аппаратуры и гидросистем	блок-картер дв. СМД-14 в сборе	шатунно- поршневая груп- па дв. СМД-14	гильза дв. СМД-14
36	ДТ-75, N=300	Слесарно-механический	головка цилиндров дв. СМД-14 в сборе	к/вал дв. СМД-14 в сборе	головка цилиндров дв. СМД-14
37	ДТ-75, N=200	Кузнечно-термический	к/вал дв. СМД-14 в сборе	головка цилиндров дв. СМД-14 в сборе	распредели-тельный вал дв. СМД-14
38	ДТ-75, N=100	Сварочно-наплавочный	Поддержи-вающий каток тр. ДТ-75 в сборе	опорный каток тр. ДТ-75 в сборе	промежуточ-ная опора тр. К-700
39	ДТ-75, N=550	Участок ремонта элек- тро-оборудования	опорный каток тр. ДТ-75 в сборе	поддержива- ющий каток тр. ДТ-75 в сборе	колесо натяжное тр. Т-100М
40	T-150K, N=300	Участок ремонта топливной аппаратуры и гидросистем	охлажления	насос пред- пусковой прокач- ки масла дв. СМД-60	поддержи-вающий ролик тележ-ки гусе- ниц тр. Т-100М

Информация по размеру диаметра внутренней поверхности стакана масляного фильтра двигателя Д - 50.

Диаметр чертежу: $120^{+0,070}$. Измеренные диаметры приведены в таблице:

- 7		rioniep eminor		приводени	
	120,01	120,09	120,06	120,01	120,04
	120,01	119,99	120,05	119,94	120,15
	120,07	120,02	120,05	119,94	120,09
	120,00	120,09	120,06	120,07	120,04
	120,07	120,02	120,07	120,03	120,06

Вариант 2 Информация по размеру валика коромысла головки цилиндров двигателя \mathcal{I} - 50. Диаметр валика по чертежу: $19_{-0.021}$. Измеренные размеры диаметра приведены в таблице:

18,979	18,96	18,98	18,92	19,06
18,99	19,05	18,98	18,97	18,95
18,99	18,97	18,98	19,00	19,07
18,97	18,99	19,00	18,91	19,04
18,98	18,99	18,98	18,99	18,97

Вариант 3 Информация по размеру шлицев первичного вала коробки передач трактора типа МТ3. Толщина шлицев по чертежу: $7.06^{+0.03}_{-0.1}$. Измеренные размеры толщины шлицев приведены в таблице:

6,97	6,99	6,96	6,91	7,01
6,96	6,96	6,91	6,90	7,11
6,94	6,91	6,99	7,01	6,98
7,09	6,91	6,97	6,98	7,11
6,91	6,99	7,04	7,01	7,00

Вариант 4

Информация по размеру шпоночного паза валика водяного насоса двигателя \mathcal{I} - 50. Ширина паза по чертежу: $5^{-0,010}_{-0,055}$. Измеренные размеры пазов приведены в таблице:

4,99	4,96	4,96	4,91	4,97
4,96	5,06	5,01	4,96	4,95

5,04	5,00	4,98	4,91	4,98
4,99	5,02	4,97	4,98	4,91
5,09	4,99	4,96	4,99	5,00

Вариант 5 Информация по размеру оси ротора масляного насоса двигателя $\mathcal{L} - 50$. Диаметр оси по чертежу: $10.5^{+0.035}$. Измеренные размеры оси приведены в таблице:

10,55	10,50	10,51	10,51	10,50
10,53	10,54	10,58	10,57	10,55
10,59	10,41	10,58	10,56	10,53
10,50	10,52	10,54	10,52	10,57
10,50	10,55	10,56	10,51	10,53

Вариант 6 Информация по размеру выхлопного клапана головки цилиндров двигателя Д - 50. Диаметр клапана по чертежу: $11_{-0.09}^{-0.07}$. Измеренные размеры клапанов приведены в таблице:

10,91	10,92	10,91	10,89	10,97
10,92	10,93	10,91	10,96	10,95
10,92	10,93	10,91	10,96	10,93
10,99	10,92	10,94	10,91	10,97
10,91	10,93	10,94	10,95	10,92

Вариант 7 Информация по размеру шлицев червяка рулевого управления трактора MT3 - 50. Толщина шлицев червяка по чертежу: $6^{-0,085}_{-0,150}$. Измеренные размеры оси приведены в

таблице:

5,85	5,89	5,86	5,91	5,97
5,90	5,89	5,91	5,87	5,86
5,85	5,91	5,88	5,89	5,90
5,89	5,87	5,91	5,85	5,86
5,98	5,99	5,99	6,01	5,86

Информация по размеру валика водяного насоса двигателя Д - 50.

Диаметр валика по чертежу: $15_{-0.012}$. Измеренные размеры диаметра валика приведены в таблице:

14,995	14,998	14,990	14,999	15,000
14,986	14,970	14,989	14,910	14,991
14,984	14,994	14,995	14,987	14,999
15,009	15,001	14,998	14,988	14,997
14,998	14,995	14,987	14,978	14,998

Вариант 9

Информация по размеру втулки выпускного клапана головки цилиндров двигателя Д-108.

Внутренний диаметр втулки по чертежу: $13^{+0,035}$. Измеренные размеры диаметра втулки приведены в таблице:

13,015	13,020	13,005	13,010	13,030
13,025	13,020	13,035	13,050	13,050
13,020	13,020	13,015	13,045	13,030
13,015	13,010	13,020	13,020	13,015
13,015	13,010	13,025	13,030	13,000

Вариант 10

Информация по размеру шатунной шейки коленчатого вала двигателя Д - 108.

Диаметр шейки по чертежу: $92_{-0,075}^{-0,040}$. Измеренные размеры диаметра шейки приведены в таблице:

91,925	91,955	91,950	91,935	91,940
91,960	91,940	91,935	91,920	91,950
91,955	91,950	91,955	91,935	91,925
91,945	91,945	91,930	91,915	91,925
91,950	91,965	91,930	91,950	91,945

Вариант 11

Информация по размеру посадочного отверстия шкива вентилятора двигателя Д - 108.

Диаметр отверстия по чертежу: $62^{+0,02}_{-0,01}$. Измеренные размеры диаметра приведены в таблице:

62,040	62,020	62,015	62,010	62,015
62,005	62,010	62,000	61,095	61,090
62,000	62,015	62,010	62,020	62,015
62,005	62,010	62,000	62,005	62,020
62,080	61,095	61,090	62,020	62,015

Вариант 12 Информация по размеру вала турбокомпрессора двигателя ЯМЗ-238НБ. Диаметр вала по чертежу: $21_{-0,009}$. Измеренные размеры диаметра приведены в таблице:

20,994	20,997	20,996	20,995	20,994
20,991	20,992	20,998	20,994	20,992
20,996	20,995	20,995	21,002	21,000
20,994	20,990	20,998	20,995	20,995
20,997	20,993	20,996	20,991	20,997

Вариант 13

Информация по размеру шатунной шейки коленчатого вала двигателя Д - 50.

Диаметр шейки по чертежу: $68_{-0,090}^{-0,075}$. Измеренные размеры диаметра шейки приведены в таблице:

67,010	67,018	67,011	67,016	67,009
67,023	67,014	67,016	67,017	67,020
67,016	67,014	67,018	67,019	67,017
67,021	67,022	67,015	67,019	67,021
67,029	67,027	67,017	67,013	67,025

Вариант 14

Информация по размеру посадочного отверстия ступицы трактора МТЗ – 50.

Диаметр отверстия по чертежу: $90^{-0.024}_{-0.059}$. Измеренные размеры диаметра отверстия приведены в таблице:

_	ι.				
	89,976	89,938	89,951	89,956	89,970
	89,964	89,946	89,966	89,939	89,947
	89,952	89,955	89,960	89,954	89,962

89,954	89,952	89,945	89,982	89,961
89,947	89,972	89,957	89,964	89,941

Информация по размеру шейки полуоси конечной передачи трактора МТЗ – 50.

Диаметр шейки по чертежу: $85^{+0,026}_{+0,003}$. Измеренные размеры диаметра шейки приведены в таблице:

85,024	85,014	85,019	85,016	85,027
85,028	85,019	85,016	85,019	85,020
85,032	85,006	85,018	85,012	85,017
85,016	85,019	85,015	85,019	85,011
85,016	85,017	85,027	85,014	85,009

Вариант 16

Информация по размеру оси вентилятора двигателя Д – 108.

Диаметр оси по чертежу: $30_{-0.014}$. Измеренные размеры диаметра оси приведены в таблице:

29,986	29,984	29,991	29,987	29,988
29,997	29,994	29,999	29,989	29,985
29,996	29,993	29,998	29,992	29,987
29,986	29,989	29,995	29,999	29,991
29,986	29,987	29,988	29,994	29,996

Вариант 17

Информация по размеру шпоночного паза валика водяного насоса двигателя ЯМЗ-238НБ. Ширина паза по чертежу: $3^{-0,010}_{-0,050}$. Измеренные размеры ширины паза приведены в таблице:

2,99	2,97	2,96	2,91	2,98
2,96	2,95	2,99	2,98	2,95
2,98	2,97	2,98	2,96	2,99
2,99	3,00	2,94	2,98	2,97
2,96	2,99	3,02	2,92	2,95

Вариант 18

Информация по размеру посадочной шейки вала привода вентилятора двигателя ЯМЗ-238HБ. Диаметр шейки по чертежу: $25^{+0.017}_{+0.002}$. Измеренные размеры диаметра приведены в таблице:

25,009	25,006	25,011	25,017	25,014
25,002	25,004	25,007	25,019	25,010
25,012	25,013	25,018	25,012	25,017
25,008	25,011	25,019	25,000	25,009
25,008	25,007	25,008	25,014	25,016

Вариант 19

Информация по размеру внутреннего отверстия втулки масляного насоса двигателя Д-108. Диаметр отверстия по чертежу: $19^{+0,105}_{+0,060}$. Измеренные размеры диаметра приведены в таблице:

19,060	19,086	19,076	19,071	19,084
19,082	19,094	19,087	19,079	19,075
19,081	19,093	19,088	19,072	19,067
19,078	19,091	19,100	19,097	19,071
19,50	19,44	19,23	19,31	19,42

Вариант 20

Информация по размеру шпоночного паза коленчатого вала двигателя Д-108.

Ширина паза по чертежу: $16^{+0.012}_{-0.040}$. Измеренные размеры ширины приведены в таблице:

16,009	16,016	15,971	15,987	15,994
15,982	15,974	15,987	15,999	16,005
15,977	15,963	15,988	15,974	15,957
15,988	15,991	15,979	15,977	15,981
15,994	15,982	15,998	16,004	16,011

Вариант 21

Информация по размеру поршневого пальца кривошипно-шатунного механизма двигателя ЯМЗ-238НБ.

Диаметр пальца по чертежу: $50_{-0.008}$. Измеренные диаметры приведены в таблице:

49,996	49,993	49,995	49,991	49,994

49,998	49,994	49,997	49,998	49,995
49,991	49,993	49,998	49,992	49,997
49,998	49,999	49,997	49,996	49,998
49,993	49,995	49,996	49,994	49,992

Информация по размеру ведущей конической шестерни трактора K-700. Диаметр посадочного места шестерни по чертежу: $100^{+0.026}_{+0.003}$. Измеренные диаметры приве-

Диаметр посадочного места шестерни по чертежу: $100^{+0.026}_{+0.003}$. Измеренные диаметры приведены в таблице:

100,024	100,014	100,019	100,016	100,001
100,028	100,019	100,016	100,019	100,020
100,032	100,006	100,018	100,012	100,017
100,016	100,019	100,015	100,019	100,011
100,016	100,017	100,027	100,014	100,009

Вариант 23

Информация по размеру валика кронштейна пусковой рукоятки двигателя $\Pi-23$. Диаметр шейки валика по чертежу: $20^{+0.023}_{+0.008}$. Измеренные диаметры приведены в таблице:

20,009	20,016	20,021	20,016	20,003
20,010	20,019	20,021	20,016	20,018
20,011	20,013	20,015	20,015	20,017
20,018	20,011	20,019	20,014	20,011
20,019	20,015	20,018	20,006	20,026

Вариант 24

Информация по размеру внутреннего отверстия корпуса редуктора пускового двигателя $\Pi-23$.

Диаметр отверстия по чертежу: $19^{+0.030}_{+0.008}$. Измеренные диаметры приведены в таблице:

19,012	19,006	19,023	19,031	19,014
19,022	19,017	19,027	19,019	19,015

19,026	19,023	19,014	19,011	19,021
19,018	19,012	19,020	19,017	19,013
19,024	19,017	19,014	19,014	19,010

Вариант 25 Информация по размеру ступицы полумуфты ведомой дифференциала трактора K-700. Диаметр ступицы по чертежу: $82_{-0,125}^{-0,080}$. Измеренные диаметры приведены в таблице:

81,875	81,920	81,895	81,880	81,870
81,900	81,905	81,910	81,900	81,910
81,885	81,890	81,895	81,880	81,870
81,910	81,920	81,900	81,915	81,910
81,875	81,775	81,890	81,900	81,905

Вариант 26 Информация по размеру цапф крестовины карданной передачи трактора K-700. Диаметр цапфы по чертежу: $45^{-0,020}_{-0,035}$. Измеренные диаметры приведены в таблице:

44,980	44,965	44,974	44,971	44,979
44,962	44,974	44,973	44,970	44,975
44,969	44,973	44,978	44,972	44,967
44,968	44,971	44,969	44,979	44,971
44,981	44,977	44,988	44,974	44,965

Информация по размеру шлицевых пазов фланца ведущей конической шестерни трактора К-700

Ширина пазов по чертежу: $5.78^{+0.125}_{+0.045}$. Измеренные размеры приведены в таблице:

5,905	5,825	5,836	5,871	5,890
5,900	5,875	5,866	5,855	5,880
5,890	5,845	5,850	5,892	5,870
5,900	5,805	5,846	5,875	5,860

5,835	5,855	5,872	5,865	5,865

Информация по размеру отверстия корпуса масляного насоса двигателя СМД-14. Диаметр отверстия по чертежу: $20^{-0.030}_{-0.062}$. Измеренные диаметры приведены в таблице:

19,970	19,937	19,956	19,945	19,964
19,940	19,962	19,958	19,954	19,979
19,956	19,945	19,965	19,962	19,952
19,941	19,967	19,950	19,947	19,955
19,952	19,953	19,976	19,961	19,938

Вариант 29

Информация по размеру шпоночного паза коленчатого вала двигателя СМД-14. Ширина паза по чертежу: $8^{-0.015}_{-0.065}$. Измеренные размеры приведены в таблице:

7,985	7,956	7,952	7,962	7,941
7,976	7,966	7,958	7,979	7,955
7,949	7,987	7,958	7,931	7,967
7,957	7,966	7,950	7,961	7,944
7,948	7,959	7,962	7,990	7,935

Вариант 30

Информация по размеру оси опорного катка подвески трактора ДТ-75. Диаметр оси по чертежу: $42^{+0.068}_{+0.043}$. Измеренные диаметры приведены в таблице:

42,059	42,056	42,031	42,045	42,080
42,060	42,074	42,057	42,059	42,065
42,046	42,043	42,078	42,052	42,057
42,068	42,056	42,059	42,049	42,061
42,053	42,060	42,048	42,059	42,065

Вариант 31

Информация по размеру оси коленчатой направляющего колеса трактора ДТ-75. Диаметр оси по чертежу: $50_{-0.050}$. Измеренные диаметры приведены в таблице:

49,950	49,972	49,975	49,971	49,991
49,968	49,954	49,987	49,980	49,975
49,981	49,973	49,968	49,992	49,987
49,978	49,991	49,979	49,997	49,981
49,984	49,987	49,968	49,984	49,979

Вариант 32 Информация по размеру валика водяного насоса двигателя СМД-14. Диаметр валика по чертежу: 20±0,007. Измеренные диаметры приведены в таблице:

19,993	19,999	19,998	19,997	19,992
20,002	20,007	20,010	19,989	19,985
19,996	20,003	20,004	20,011	20,003
19,998	19,991	19,999	20,006	20,001
19,997	19,995	19,998	19,996	19,986

Вариант 33 Информация по размеру отверстия корпуса водяного насоса двигателя СМД-14. Диаметр отверстия по чертежу: $25^{+0.023}$. Измеренные диаметры приведены в таблице:

25,024	25,019	25,016	25,008	25,017
25,017	25,016	25,013	25,013	25,015
25,014	25,023	25,028	25,011	25,003
25,009	25,012	25,004	25,008	25,001
24,989	24,991	25,002	25,011	25,007

Вариант 34 Информация по размеру отверстия блок-картера двигателя СМД-14. Диаметр отверстия по чертежу: $19^{+0,033}$. Измеренные диаметры приведены в таблице:

19,034	19,023	19,008	19,010	19,026
19,025	19,007	19,027	19,019	19,035
19,026	19,023	19,014	19,011	19,015

19,018	19,013	19,009	19,004	19,001
19,003	19,017	19,008	19,016	19,016

Информация по размеру гильзы цилиндра двигателя СМД-14.

Диаметр внутренней поверхности гильзы по чертежу: $120^{+0.060}$. Измеренные диаметры приведены в таблице:

120,010	120,019	120,026	120,028	120,011
120,021	120,026	120,009	120,024	120,015
120,028	120,032	120,055	120,034	120,049
120,050	120,039	120,048	120,035	120,054
120,025	120,042	120,037	120,062	120,046

Вариант 36 Информация по размеру отверстия в головке цилиндров двигателя СМД-14. Диаметр отверстия по чертежу: $20^{+0.023}$. Измеренные диаметры приведены в таблице:

20,024	20,019	20,016	20,008	20,017
20,017	20,016	20,013	20,015	20,015
20,013	20,023	20,028	20,021	20,003
20,009	20,012	20,004	20,008	20,001
19,989	19,991	20,005	20,011	20,001

Вариант 37 Информация по размеру средней шейки распределительного вала двигателя СМД-14 Диаметр шейки по чертежу: $52^{-0.030}_{-0.060}$. Измеренные диаметры приведены в таблице:

51,970	51,956	51,941	51,955	51,957
51,960	51,950	51,947	51,979	51,965
51,946	51,943	51,958	51,961	51,957
51,968	51,956	51,969	51,979	51,951
51,943	51,955	51,948	51,938	51,940

Информация по размеру наружной поверхности стакана промежуточной опоры трактора К-700.

Диаметр поверхности по чертежу: $170_{-0.040}$. Измеренные диаметры приведены в таблице:

169,960	169,999	169,968	169,981	169,971
169,973	169,989	169,975	169,984	170,100
169,977	169,998	169,984	169,974	169,969
169,975	169,989	169,968	169,977	169,974
169,957	169,982	169,977	169,972	169,960

Вариант 39

Информация по размеру внутреннего отверстия колеса натяжного трактора Т-100М. Диаметр отверстия по чертежу: $120_{-0.059}^{-0.024}$. Измеренные диаметры приведены в таблице:

119,976	119,941	119,954	119,973	119,955
119,941	119,959	119,950	119,974	119,960
119,953	120,961	120,945	120,949	120,955
119,964	119,975	119,958	119,947	119,960
119,985	119,934	119,956	119,963	119,975

Вариант 40

Информация по размеру оси поддерживающего ролика тележки гусениц трактора Т-100М. Диаметр оси по чертежу: $55_{-0.030}$. Измеренные диаметры приведены в таблице:

54,976	54,981	54,961	54,981	54,984
54,972	54,990	54,987	54,989	54,975
54,976	54,983	54,978	54,992	54,971
55,008	54,971	54,969	54,979	54,981
54,982	54,977	54,988	54,991	55,004